Bárðarbunga, the Toxic Tourist Trap

Quick: what was the name of that Icelandic volcano that caused such a stir a few years ago? Oh, that’s right. You don’t remember. No one remembers. (Unless you live outside the U.S. in a place where you might have actually heard someone say the name correctly.) To Americans, it will forever be known as “That Icelandic Volcano” or “The Volcano That Nobody Can Pronounce” – even though it is possible to pronounce the name. Say it with me: Eye-a-Fiat-la-yo-could (Eyjafjallajökull).

Well, back at the end of August 2014 another volcano erupted in Iceland, and there is no excuse for not being able to pronounce this name correctly: Bárðarbunga. (OK, you have one excuse: use of the letter ð is uncommon outside of Iceland. In linguistics, ð is a “voiced dental fricative” which, in English, is a voiced “th”. “The” has a voiced “th”. “Theme” has an un-voiced “th” or, rather,  “voiceless dental non-sibilant fricative“.) Look, you don’t want to offend any Icelanders, so say it right:

“Bowr-thar-Bunga.” See, it’s easy to say. (You may see people who are afraid of the letter ð refer to the recent eruption as Holuhraun [pronounced “Ho-lu-roin”], because Bárðarbunga is part of the Holuhraun lava field. So be aware of that.)

I know what you’re going to ask: “What is so special about this volcano? I haven’t heard anything about it up to this point, so why should I care?” You haven’t heard anything about it because you don’t live in Iceland or in Europe, which is downwind of Iceland. And, why should you care? Let me count the ways in the rest of this blog post.

You probably have heard of Kīlauea (and have no trouble pronouncing that name) and the lava flow that inched its way towards the town of Pahoa. Kīlauea has been continuously erupting since 1983. Bárðarbunga erupted on 29 August 2014 and has been spewing lava ever since, which at this point, is over 100 days of non-stop erupting. It’s Iceland’s version of Kīlauea. (Hopefully, it won’t continue to erupt for another 30 years.)

Just like Kīlauea, Bárðarbunga is attracting tourists from all over the world. It seems every wannabe photographer and videographer has gone (or wants to go) to Iceland to try to come up with the next viral video showing the breathtaking lava flows. Seriously, do a search for Bardarbunga or Holuhraun on YouTube or vimeo and see how many results show up. Here’s a pretty typical example (filmed by someone from Iceland):

Want to join in the fun? Just grab your camera, head to Iceland, hire an airplane or helicopter pilot, and find the most dramatic music you can think of to go along with your footage. Watch out, though – the airspace around the volcano can be rather crowded. As this video shows, it can be hard to film the volcano without other aircraft getting in the way.

If photography is more your thing, here are the latest images of the eruption on Twitter. (Look for the pictures of Beyonce and Jay-Z. If Twitter is correct, they flew over the volcano for his birthday. Viewing the eruption has gone mainstream! You’re too late, hipsters! Good luck getting to the next volcanic eruption before it becomes cool.)

Back to the matter at hand: why you should care about Bárðarbunga. After its first 100 days of erupting, it has created a field of new lava (76 km2) that is larger than the island of Manhattan (59 km2). The volcano has been creating a toxic plume of SO2 for the last 100 days that is making it difficult to breathe. (Here are some of the known health effects of breathing SO2.) SO2 can ultimately be converted into sulfuric acid (acid rain), depending on the chemistry in the air around the volcano. And while it may not be producing as much ash as Eyjafjallajökull did, VIIRS imagery shows it is producing ash, which is a threat to aircraft.

If you follow this blog, you know the best RGB composite for detecting ash is the True Color composite. This is because the visible wavelength channels that make the composite are sensitive to the scattering of light by small particles, like dust, smoke and ash. Iceland is a pretty cloudy place, so it’s not always easy to spot the ash plume, so here it is at its most visible:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:57 UTC 11 September 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:57 UTC 11 September 2014. The red arrow points to the location of Bárðarbunga.

Click on the image (or any other image) to see the full resolution version. The red arrow shows the location of Bárðarbunga. In case you’re wondering, the borders drawn inside the island are IDL’s knowledge of the boundaries of lakes and glaciers (jökull in Icelandic). The big one just south of the red arrow is Vatnajökull – the largest glacier in Europe and one of three national parks in Iceland. (If you want to go there, be aware of closures due to volcanic activity.)

See the ash plume extending from the red arrow to the east-northeast out over the Atlantic Ocean? Now, try to find the ash plume in this animation of True Color images from 29 August to 14 October 2014:

Animation of VIIRS True Color images of Iceland 29 August - 14 October 2014

Animation of VIIRS True Color images of Iceland 29 August – 14 October 2014

As with most of my animations, I have selectively removed images where it was too cloudy to see anything. Sometimes, the steam from the volcano mixes with the ash to make its own clouds, much like a pyrocumulus. Watch for the ash to get blown to the northwest and then southwest in early October. In case you can’t see it, here’s a static example:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:15 UTC 10 October 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:15 UTC 10 October 2014. The red arrow shows the location of Reykjavik.

This time, the red arrow shows Reykjavik, the nation’s capitol and likely only city in Iceland you’ve heard of. The ash plume is pretty much right over Reykjavik!

Over the course of the first 100 days, no place in Iceland has been kept safe from the ash plume. But, that’s not the only threat from Bárðarbunga: I also mentioned SO2. If you recall from our look at Copahue (Co-pa-hway – say it right!) the EUMETSAT Dust algorithm is sensitive to SO2. So, can we detect the toxic sulfur dioxide plume from Bárðarbunga? Of course! But, it does depend on cloudiness and just how much (and how high) SO2 is being pumped into the atmosphere.

If you read my post on Copahue, you should have no trouble picking out the sulfur dioxide plume in this image of Bárðarbunga:

EUMETSAT Dust RGB composite applied to VIIRS, 12:57 UTC 11 September 2014

EUMETSAT Dust RGB composite applied to VIIRS, 12:57 UTC 11 September 2014

This image is from the same time as the first True Color image above, when the plume was very easy to see. Also note the large quantity of contrails (aka “chemtrails” to the easily misled). Those are the linear black streaks west of Iceland. If you’re confident in your ability to see the sulfur dioxide, see how often you can pick it out in this animation:

Animation of EUMETSAT Dust RGB images from VIIRS (29 August - 10 October 2014)

Animation of EUMETSAT Dust RGB images from VIIRS (29 August – 10 October 2014)

Some detail is lost because an RGB composite may contain as many as 16 million colors, while the .gif image standard only allows 256. But, you can still see the pastel-colored SO2 plume, which almost looks greenish under certain conditions due to interactions with clouds. Also note the volcano itself appears cyan – the hottest part of the image has a cool color! Unusual in a composite that makes almost everything appear red or pink.

If you want to see the volcano look more like a hot spot, here are animations of the shortwave IR (M-13, 4.0 µm) and the Fire Temperature RGB composite (which I promote whenever I can). I should preface these animations by saying I have not removed excessively cloudy images but, at least 80% of the days have two VIIRS afternoon overpasses and, to reduce filesizes, I have kept only one image per day:

Animation of VIIRS M-13 images of Iceland (29 August - 15 October 2014)

Animation of VIIRS M-13 images of Iceland (29 August – 15 October 2014)

The Fire Temperature RGB is made up of M-10 (1.6 µm; blue), M-11 (2.25 µm; green) and M-12 (3.7 µm; red):

Animation of VIIRS Fire Temperature RGB images of Iceland (29 August - 15 October 2014)

Animation of VIIRS Fire Temperature RGB images of Iceland (29 August – 15 October 2014)

No surprise, molten rock is quite hot! That area of lava has saturated my color table for M-13 and it saturated the Fire Temperature RGB. As I’ve said before, only the hottest fires show up white in the Fire Temperature RGB and lava is among the hottest things you’ll see with VIIRS. Sometimes, you can see the heat from the volcano through clouds (and certainly through the ash plume)! It’s also neat to watch the river of lava extend out to the northeast and then cool.

To quantify it a bit more, the first day VIIRS was able to see the hot spot of Bárðarbunga (31 August 2014), the M-13 brightness temperature was the highest I’ve seen yet: 631.99 K. The other midwave-IR channels (M-12 and I-4; 3.7 and 3.74 µm, respectively) saturate at 368 K. The Little Bear Fire (2012) peaked at 588 K and that fire was hot enough to show up in M-10 (1.6 µm) during the day, so it’s no wonder that we’ve saturated the Fire Temperature RGB.

There’s one more interesting way to look at Bárðarbunga using a new RGB composite. When I was first tipped to this event, I saw this image from NASA, which you can read more about here. That image was taken by the Operational Land Imager (OLI) from Landsat-8 and is a combination of “green, near-infrared and shortwave infrared” channels. Applying this to VIIRS, that combination becomes M-4 (0.55 µm), M-7 (0.87 µm) and M-11 (2.25 µm), which is similar to the Natural Color composite (M-5, 0.64 µm; M-7, 0.87 µm; M-10, 1.61 µm) except for a few notable differences. M-4 is more sensitive to smoke and ash and vegetation than M-5. And M-11 is more sensitive to fires and other hotspots than M-10.

The differences are subtle, but you can see them in this direct comparison:

Comparison between VIIRS "Natural Color" and "False Color with Shortwave IR" RGB composites (12:38 UTC 14 October 2014)

Comparison between VIIRS “Natural Color” and “False Color with Shortwave IR” RGB composites (12:38 UTC 14 October 2014)

NASA calls this RGB composite “False Color with Shortwave Infrared,” although I’m sure there has to be a better name. Any suggestions?

Most of my images and loops have come from the first 45 days after eruption. This was a very active period for the volcano, and is where most of the previously mentioned videos came from. (And trust me, you and your browser couldn’t handle the massive animations that would have resulted from using all 100+ days of images.) To prove Bárðarbunga has gone on beyond that, here’s one of the new RGB composites from 17 November 2014:

VIIRS false color RGB composite of channels M-4, M-7 and M-11, taken 13:42 UTC 17 November 2014

VIIRS false color RGB composite of channels M-4, M-7 and M-11, taken 13:42 UTC 17 November 2014

This image really makes Iceland look like a land of fire and ice, which is exactly what it is!

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , , , , | 2 Comments

When China Looks Like Canada

OK, so there probably aren’t any “Canadatowns” in China like there are Chinatowns in Canada. (Now you’re probably wondering what a Canadatown in China would look like. Maybe stores and restaurants selling poutine and maple syrup? Hockey rinks and curling sheets everywhere? A Tim Hortons on every street corner?) But this isn’t about that!

Last time I made the comparison between Canada and China, it was because there were numerous fires, particularly in the Northwest Territories, that produced so much smoke that it choked the air, making it difficult to breathe. This smoke was visible all the way down to the Lower 48 United States. These huge smoke plumes looked a lot like Chinese super-smog. Today, we’re talking not about the smoke and smog… well, actually, smoke and smog will be mentioned… hmm. Uh, what I mean is we’re focusing on the zillions of fires that VIIRS saw over Manchuria – just like the zillions of fires in the Northwest Territories. Well, OK, not “just like” – those fires were caused by Mother Nature. These fires appear to be intentionally set by human beings and are much smaller.

A CIRA colleague was checking out a real-time loop of MTSAT 3.75 µm imagery over northeastern China and reported seeing bright spots (which are typically hot spots from fires) throughout the area for most of the last month. So what is going on there?

MTSAT has ~4 km spatial resolution, so it’s not the best for fire detection. (At the time of this writing, CIRA has access to MTSAT-2, aka Himawari-7, which has 4 km spatial resolution in the infrared channels. The Advanced Himawari Imager {AHI} was successfully launched on Himawari-8 on 7 October 2014 and, when the operational imagery becomes available, it will have 2 km resolution in this channel [and it will have many of the channels that VIIRS has]. CIRA has plans to acquire this data when it becomes available. Until then, you’ll have to deal with coarse spatial resolution.) To really see what is going on, you need the spatial resolution of VIIRS.

Of course, spatial resolution is not the only thing you need. Check out the VIIRS M-13 (4.0 µm)  image below from 04:48 UTC 18 November 2014. How many hot spots can you see?

VIIRS M-13 image of northeastern China, taken 04:48 UTC 18 November 2014

VIIRS M-13 image of northeastern China, taken 04:48 UTC 18 November 2014.

This image uses a color table specifically designed to highlight hot spots from fires. Any pixel above 317 K (44 °C or 111 °F) is colored. (As always, click on the image to see it in full resolution.) There aren’t that many colored pixels, even though we’re using a relatively low temperature threshold for fire detection. There are, however, a lot of nearly black pixels, which means they are warmer than the background, but not warm enough to be highlighted. (In case you’re not sure, I’m talking about the area between 45° and 48°N, 123° and 128°E.) If we used this temperature threshold in a summer scene, there would be a lot false alarm fire detections.

A situation like this is when the Fire Temperature RGB composite comes in handy. It can detect the small (or low temperature) fires with no problem, particularly since the background isn’t very warm. Try to count up all the red pixels in this image from the same time:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 04:48 UTC 18 November 2014

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 04:48 UTC 18 November 2014.

That’s a lot of fires! It’s probably because there are so many of them that they were visible in MTSAT. If you look closely at the full resolution image, there are two significant fires in North Korea, plus many more smaller fires/hot spots northwest and north of the Yellow Sea. Go back and compare the Fire Temperature RGB with the M-13 image. Admit it: fires in this scene are easier to see in the RGB composite.

If you don’t believe me, check out the M-13 and Fire Temperature RGB images that have been zoomed in on main concentration of fires. The Fire Temperature RGB has been lightened a little bit and the M-13 image has been darkened a little bit to highlight the hot spots better.

VIIRS M-13 image (as above) but zoomed in and slightly darkened

VIIRS M-13 image (as above) but zoomed in and slightly darkened.

VIIRS Fire Temperature RGB image (as above) but zoomed in and lightened slightly

VIIRS Fire Temperature RGB image (as above) but zoomed in and lightened slightly.

If you want to know why the Fire Temperature RGB composite works, go back and read this and this. Otherwise, stay put. If you’re familiar with the Fire Temperature RGB, because you are a loyal follower of this blog, you may be wondering why the overall image looks so dark.

All the previous cases where I’ve shown this RGB have been in the summer, typically under bright sunlight (since fires don’t tend to occur in winter). Here, it’s almost winter so there is less sunlight and the background surface is colder, which are going to make the image appear darker. Plus, there is some snow in the scene and snow appears black in this RGB composite. It’s not reflective at 1.61 µm (blue component) or 2.25 µm (green component) or at 3.74 µm (red component), plus it’s cold so it doesn’t emit much radiation at any of these wavelengths either.

The Natural Color RGB shows where the snow is. Look for the cyan signature of snow and ice here:

VIIRS Natural Color RGB composite of channels M-5, M-7, and M-10, taken 04:48 UTC 18 November 2014

VIIRS Natural Color RGB composite of channels M-5, M-7, and M-10, taken 04:48 UTC 18 November 2014.

The Natural Color RGB shows that the fires are occurring in an area with a lot of lakes. Also, there isn’t a very strong green signature from vegetation in this area. So what is burning? Your guess is as good as mine. (Unless your guess is a bunch of Chinese children using magnifying glasses to burn ants. That’s not a very good guess – particularly because, as I said, there is less sunlight in the winter and it’s colder so the ants wouldn’t ignite easily. Also, that’s a cruel thing to suggest and my reasoned account of why that wouldn’t work should not be taken as an implicit admission that I ever did such a thing as a kid.)

A quick perusal of Google Maps reveals that it is an area full of agricultural fields. So my guess is that it’s some sort of end-of-year burning of agricultural waste. They are all small or low temperature fires and they’re not anything that made the news (I checked), so it’s doubtful that it’s a zillion uncontrolled fires.

How do we even know they’re fires? Besides the fact that they show up in the Fire Temperature RGB, we can also see the smoke. Check out this True Color RGB image and focus on the area where the majority of the fires are occurring:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken at 04:48 UTC 18 November 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken at 04:48 UTC 18 November 2014.

There are visible smoke plumes right where the greatest concentration of hot spots is located. There is also a long plume of gray along the base of the Changbai Mountains stretching southwest to the shores of the Yellow Sea, but it’s not clear if that is also smoke or simply smog. By the way, if you have respiratory ailments, don’t look at the southwest corner of the image (west of the Yellow Sea) because that’s definitely smog! The northern extent of that large area of smog is the Beijing metropolitan area.

What is most cough- and barf- inducing about that smog near Beijing is that it is thick enough to completely obscure the view of the surface. Last time we looked at that, it was record levels of smog that was receiving international attention. The thick, surface obscuring smog you see here isn’t record breaking or news-worthy – it’s simply a normal late fall day in eastern China!

If you can’t think of anything else to be thankful for on Thursday, you can be thankful that you don’t have to breathe air like that. Unless you live there. But, then, you wouldn’t be celebrating Thanksgiving anyway. And, if you live in Canada, you already had your Thanksgiving. You get to just sit back, relax, and watch Americans trample each other to death for discount electronics. Being able to avoid the Black Friday mob is something to be truly thankful for!

Posted in Uncategorized | Tagged , , , , , , , , , | Comments Off on When China Looks Like Canada

Beginning of Autumn in the Great Lakes

Have you noticed it? The seasons are changing (for the mid- and high latitudes, at least). Days are getting shorter (or longer if you live in the upside-down hemisphere). This time of year, if you live in Alaska or Scandinavia or similar high latitude locations, you lose about 5-10 minutes of available daylight each day. (That’s between a half and one hour per week!) You may have noticed by the fact that your neighbor no longer mows the lawn at 11:00 PM because it’s still bright outside and hey, why not? I wasn’t going to sleep anyway.

Closer to home – in the mid-latitudes – loss of daylight is more like 1-3 minutes per day, which isn’t as noticeable. But, one day, you watch the sun set and look at the clock and realize that it’s only 6:30 PM and you think, didn’t it used to be light out later than this?

That’s not the only way to tell the seasons are changing. For one, there’s the arrival of snow. (Although parts of Montana, Wyoming and South Dakota received snow earlier this year while it was still technically summer.)  And, for two, there’s what VIIRS observed on 27 September 2014:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 17:57 UTC 27 September 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 17:57 UTC 27 September 2014

In case it’s not obvious, here’s what VIIRS saw earlier in the month (8 September 2014):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 17:13 UTC 8 September 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 17:13 UTC 8 September 2014

Notice anything different between the two images? (Remember to click on the images, then on the “1735 x 1611” links below the banner to see the images in full resolution.)

That’s right – the loss of daylight leads to one of the benefits of autumn: fall foliage. VIIRS True Color imagery shows, quite clearly, that the leaves of New England and eastern Canada have changed color. Forests that were green in early September have turned orange, red and brown by the end of the month.

Another thing you may have noticed comparing those two images: the change from green to beige in the area around Montreal, Quebec. This is another sign of autumn: the fall harvest. This is a productive agricultural region in eastern Canada, and what you are seeing is the green vegetation (crops) being harvested, leaving behind bare dirt.

True Color imagery is useful for observing the changing foliage and the harvest because it is designed to reproduce what we humans observe on the ground. The red, green and blue components of the RGB composite are channels in the red (M-5, 0.67 µm), green (M-4, 0.55 µm) and blue (M-3, 0.48 µm) portions of the electromagnetic spectrum. When leaves change from green to red, the True Color RGB detects that.

Now, you’ve probably known since elementary school (or at least middle school) that leaves change color because of chlorophyll. And, unless you became a botanist, that is probably the limit of your knowledge on the subject. But, there’s a lot of interesting chemistry that goes on inside a leaf (and the whole tree) that determines it’s color.

Of course, leaves are green because they contain chlorophyll. Chlorophyll is necessary for plants to convert sunlight into sugar. Chlorophyll, by necessity due to it’s job, is highly absorbing of visible-wavelength radiation, although it is slightly less absorbing of green wavelengths. Green light is therefore preferentially reflected out of the leaves and into your eye, and the leaves appear green.

When the sunlight goes away and the air becomes cold, deciduous trees go into hibernation. They break down the chlorophyll in their leaves, and send the remaining nutrients down into the trunk and roots. This exposes the carotinoids that were in the leaves and these carotinoids have a yellow or orange color – they preferentially reflect yellow and/or orange wavelengths. Red colors come from a pigment called anthocyanin, which was recently discovered to be a sort of “plant sunscreen”.

Now, utilizing sunscreen when you get all your energy from the sun may sound silly but, recent studies have shown that anthocyanin protects the leaves from sun damage once the chlorophyll is gone so that the tree has time to extract all the nutrients out of the leaves before they fall off. Trees in poor soil conditions are more likely to turn red in the fall as a natural defense mechanism – they need to store all the nutrients they can from their leaves, since they aren’t getting them from the soil.

Oak and other leaves turn brown in the fall because of a buildup of tannin (link to PDF file), which is a waste product. Brown leaves are full of plant poo! Think about that the next time you go on a fall color driving tour.

Now, back to the satellite science before the biologists come after me for grossly oversimplifying leaf chemistry. I’ve often talked about the Natural Color RGB composite as being similar to the True Color RGB in many instances (except for the detection of ice and snow). So, what does that look like here?

Here’s the VIIRS Natural Color RGB from 8 September 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 17:13 UTC 8 September 2014

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 17:13 UTC 8 September 2014

And here’s the same RGB from 27 September 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 17:57 UTC 27 September 2014

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 17:57 UTC 27 September 2014

Why does the vegetation still appear green when the leaves have changed color? Because we’ve made vegetation artificially appear green. The Natural Color RGB uses the red wavelength visible channel (M-5, 0.67 µm) as the blue component. The green component is a near-infrared channel (M-7, 0.87 µm), where plants are their most reflective – leaves and other plant tissues don’t absorb radiation at this wavelength. The red component is a longer wavelength channel (M-10, 1.61 µm) where the water inside the leaves starts to absorb radiation and the reflectance goes down. Cellulose and lignin also weakly absorb at 1.61 µm. The bottom line is, plants are highly reflective at 0.87 µm regardless of how healthy the plant is, or what color the leaves are – so they will always appear green in the Natural Color images.

You might also note the one difference (apart from clouds) that shows up between the two Natural Color images is the lack of green surrounding Montreal in the 27 September image. This is another sign of the fall harvest: the highly reflective plants have been removed and all that’s left is dirt, which is not as reflective. That’s why those areas appear more brown in the later image.

If we look a bit further west in the True Color imagery from 27 September 2014, the fall color really stands out:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 17:57 UTC 27 September 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 17:57 UTC 27 September 2014

Fall colors are visible from the Adirondacks of Upstate New York and Quebec to the Upper Peninsula of Michigan. The most vivid fall color is in Ontario – both in the area of Sault Ste. Marie and in the area of Algonquin Provincial Park, the oldest provincial park in Canada. Every autumn, the Friends of Algonquin Park post pictures of the fall colors, including this shot from 27 September 2014 showing just what VIIRS was seeing. Amazing colors!

We have sunny days, cool nights and plant survival techniques to thank for that.

 

BONUS:

Here’s a desktop wallpaper that’s zoomed in on the above image and cropped to the most popular screen resolution (1366×768):

VIIRS True Color RGB Composite Desktop Wallpaper (17:57 UTC 27 September 2014)

VIIRS True Color RGB Composite Desktop Wallpaper (17:57 UTC 27 September 2014). This image fits monitors with a 16:9 ratio and is optimized for 1366×768 screen resolutions.

Make sure you click on the image, then on the “1366 x 768” link below the banner to get the full resolution image. Then you can right-click on the image and choose “Set as desktop background” to save it as your new desktop wallpaper.

Posted in Uncategorized | Tagged , , , , , , , , , , , | Comments Off on Beginning of Autumn in the Great Lakes

Investigating Mysteries of the Deep, Dark Night

Conspiracy theorists will tell you that conspiracies exist everywhere; that they’re part of daily life; and that most people are ignorant of all the attempts by various governments around the world to covertly control every facet of your life. Only they know the truth. But, that’s just what they want you to believe! Conspiracy theorists are simply manipulating you in order to control you and create a New World Order! Wake up!

Full disclosure: I am subsidized by the U.S. government to inform people of the capabilities and uses of the satellite instrument called VIIRS and today I’ll show you how that satellite instrument can help separate fact from fiction when it comes to the latest conspiracy theory. (Of course, working for the government means I could be part of the conspiracy!  Mwa ha ha!)

During the last week of August 2014, I was sent this link to a story from a pilot/photographer who captured “the creepiest thing so far” in his long flying career. I’ll quote his initial post again in its entirety here (for those of you too lazy to click on the links):

Last night [24 August 2014] over the Pacific Ocean, somewhere South of the Russian peninsula Kamchatka I experienced the creepiest thing so far in my flying career. After about 5 hours in flight we left Japan long time behind us and were cruising at a comfortable 34.000ft with about 4,5 hours to go towards Alaska.
We heard via the radio about earthquakes in Iceland, Chile and San Francisco, and since there were a few volcanos on our route that might or might not be going off during our flight, we double checked with dispatch if there was any new activity on our route after we departed from Hongkong.

Then, very far in the distance ahead of us, just over the horizon an intense lightflash shot up from the ground. It looked like a lightning bolt, but way more intense and directed vertically up in the air. I have never seen anything like this, and there were no flashes before or after this single explosion of light.

Since there were no thunderstorms on our route or weather-radar, we kept a close lookout for possible storms that might be hiding from our radar and might cause some problems later on.

I decided to try and take some pictures of the night sky and the strange green glow that was all over the Northern Hemisphere. I think it was sort of a Northern Lights but it was much more dispersed, never seen anything like this before either. About 20 minutes later in flight I noticed a deep red/orange glow appearing ahead of us, and this was a bit strange since there was supposed to be nothing but endless ocean below us for hundreds of miles around us. A distant city or group of typical Asian squid-fishing-boats would not make sense in this area, apart from the fact that the lights we saw were much larger in size and glowed red/orange, instead of the normal yellow and white that cities or ships would produce.

The closer we got, the more intense the glow became, illuminating the clouds and sky below us in a scary orange glow. In a part of the world where there was supposed to be nothing but water.

The only cause of this red glow that we could think of, was the explosion of a huge volcano just underneath the surface of the ocean, about 30 minutes before we overflew that exact position.

Since the nearest possible airport was at least 2 hours flying away, and the idea of flying into a highly dangerous and invisible ash-plume in the middle of the night over the vast Pacific Ocean we felt not exactly happy. Fortunately we did not encounter anything like this, but together with the very creepy unexplainable deep red/orange glow from the ocean’s surface, we felt everything but comfortable. There was also no other traffic near our position or on the same routing to confirm anything of what we saw or confirm any type of ash clouds encountered.

We reported our observations to Air Traffic Control and an investigation into what happened in this remote region of the ocean is now started.

If you go back and click on the link, you’ll see he posted several pictures of the mysterious red lights along with more detailed information about where and when this occurred. To save you some time, here is a representative picture (taken at 11:21 UTC 24 August 2014). And here is the location of the aircraft when they saw the lights.

There are three parts to this story: 1) the bright flash of light that looked like lightning coming up from the surface; 2) the aurora-like features in the sky; and 3) the red and orange lights from the clouds below that appeared to be larger than ordinary ship lights.

Since the story was first posted, people from all over commented on what they thought the lights were and the pilot has been updating his webpage to cover the most common and/or most likely explanations. The media picked up the story and used it to claim the world was coming to an end. Existing theories range from UFOs (unidentified flying objects) and UUSOs (unidentified under-surface objects) operated by space aliens to covert military operations to spontaneously-combusting methane bubbling out of the ocean to “earthquake lights“. The pilot himself initially thought it was an underwater volcanic eruption.

So, can VIIRS shed light on what was going on? Yes – at least, on #2 and #3. VIIRS passed over the area in question at 15:35 UTC on 24 August, which is about 4 hours after the pilot took his pictures. This means VIIRS can’t say anything about the lightning-like flash that was observed. So #1 is unexplained.

As for #2 – the aurora-like features in the sky – those are simply airglow waves. We’ve discussed airglow and airglow waves before here and here.

Now, onto #3 where VIIRS is most informative: the mysterious surface lights. I mentioned the VIIRS overpass at 15:35 UTC on 24 August. Here’s what the Day/Night Band (DNB) saw:

VIIRS Day/Night Band image from 15:35 UTC 24 August 2014.

VIIRS Day/Night Band image from 15:35 UTC 24 August 2014.

Look at 47.5°N latitude and 159°E longitude. (You can click on the image, then on the “4329 x 2342” link below the banner to see the full resolution image.) Those are the lights the pilot saw! (Note also that this night was near new moon, so any illumination of the clouds in that area comes from airglow. Light in the northeast corner of the image is twilight from the approaching sunrise.)

Now, VIIRS also has bands in the short-, mid- and long-wave infrared (IR). Surely, they must have seen the heat signature put out by a volcanic eruption, right? Not necessarily. The pilot’s photographs clearly show the lights shining through a layer of clouds, and it doesn’t take much cloud cover to obscure heat signatures at these wavelengths. But, for completeness, here are the observed brightness temperatures at 3.7 µm (channel M-12) and 10.7 µm (channel M-15):

VIIRS M-12 image from 15:35 UTC 24 August 2014

VIIRS M-12 image from 15:35 UTC 24 August 2014

VIIRS M-15 image from 15:35 UTC 24 August 2014

VIIRS M-15 image from 15:35 UTC 24 August 2014

I don’t see any hotspots in either of those images near the location of the lights. But, as I said, this doesn’t disprove the presence of flaming methane or volcanic activity because of possible obscuration by clouds. (Note that the clouds are easier to see in the DNB image than either of the IR images because there is no thermal contrast between the clouds and the open ocean for the IR images to take advantage of. There is, however, reflection of airglow light available to provide contrast in the DNB.)

What about the night before? The night after? Were the lights still there?

Here’s the DNB image from 15:54 UTC 23 August 2014 (aka the night before):

VIIRS DNB image from 15:54 UTC 23 August 2014

VIIRS DNB image from 15:54 UTC 23 August 2014

The light is there in pretty much the same place, although it looks like one big circle instead of a number of smaller lights. What is going on? Once again, it’s clouds. This time, the longwave IR shows we have optically thicker and/or an additional layer of high clouds over the lights:

VIIRS M-15 image from 15:54 UTC 23 August 2014

VIIRS M-15 image from 15:54 UTC 23 August 2014

Optically thicker clouds scatter and diffuse the light more, and what you are seeing in the DNB image is the area of clouds surrounding the light source that scatter the light to the satellite. See how clouds scatter the city lights of the U.S. Midwest in this comparison between the DNB and M-15 from 07:42 UTC 2 September 2014:

[beforeafter][/beforeafter]

(You may have to refresh the page if this before/after image trick doesn’t work.)

It’s not that Chicago, Illinois and Gary, Indiana extend that far out into Lake Michigan or that the map is not plotting correctly. It’s that the optically thicker clouds over the southern end of the lake scatter more of the light back to the satellite (and over a larger area than the lights themselves), making it appear that the light is coming from over the lake.

Similarly, scattering in the clouds makes the individual “mystery lights” over the Pacific Ocean appear to be one large area of light, instead of a number of smaller lights.

How do the lights look on 25 August 2014 (aka the night after)? Here’s the DNB image:

VIIRS DNB image from 15:18 UTC 25 August 2014

VIIRS DNB image from 15:18 UTC 25 August 2014

Did you notice that? The lights aren’t in the same place as before. They moved. In fact, I tracked these lights in the DNB for two weeks. And I got this result:

Do volcanoes move around from day to day? I think we can safely say the pilot was not observing a volcanic eruption.

Now, I don’t know much about spontaneously combusting methane bubbles in the ocean, but I doubt they are this frequent. The pilot found another pilot’s report of methane burning over the ocean from 9 April 1984 (which also occurred during a flight from Japan to Alaska) but, that was during the day and it was the resulting cloud that was spotted, not the actual flames. There is no evidence of clouds being produced by these lights over this two week period. There also isn’t much evidence from seismic activity over this period to justify earthquake lights.

Another theory put forth was meteorites but, again, it seems highly improbable that VIIRS would be capturing this many meteorites hitting this localized area of the Pacific Ocean every night for two weeks. Plus, they would have to be pretty large meteors to appear as large as these lights.

Unless you believe in UFOs (or UUSOs), that leaves only one question: why were the pilots of this flight so quick to dismiss ships? The DNB has seen ships on the ocean before, and they look a lot like this. (You can find examples of individual boats observed by the DNB here and an example of larger squid boat operations here.)

It is true that most squid boats use white or greenish light and the pictures clearly show red and orange lights coming up through the clouds. But military ships are known to use red lights at night, at least, according to Yahoo! Answers.

If it looks like a fleet of ships and moves like a fleet of ships, I’m guessing it’s a fleet of ships. Unless, of course, it’s a gam of sharks with freakin’ laser beams attached to their heads.

 

Posted in Uncategorized | Tagged , , , , , , , , , , , | 11 Comments

When Canada Looks Like China

No, I’m not talking about Chinatown in Vancouver. Or Chinatown in Toronto. Or any other Chinatown in Canada. I’m talking about this. Or, more exactly, this. Poor air quality is making it difficult to breathe in Canada and elsewhere.

Unlike the situation in China, you can’t really blame the Canadians for their poor air quality. (Unless, of course, some serial arsonist is wreaking havoc unfettered.) You see, it has been an active fire season in western Canada, to put it mildly. Here’s a not-so-mild way to put it. That article, from 3 July 2014, put the number of fires in the Northwest Territories alone at 123, with most of them caused by lightning. But, after a check of the Northwest Territories’ Live Fire Map on 30 July 2014 it looks like there are more than that:

"Live Fire Map" from NWTFire, acquired 17:00 UTC 30 July 2014

"Live Fire Map" from NWTFire, acquired 17:00 UTC 30 July 2014. This is a static image, not an interactive map.

I estimated 160-170 fires in that image (assuming I didn’t double count or miss any). How many fires can you count?

At one point earlier in July, it was estimated that battling the fires was costing $1 million per day! The fires have been impacting power plants, causing power outages, impacting cellular and Internet service, closing the few roads that exist that far north, and doubling the number of respiratory illnesses reported in Yellowknife, the territory’s capital.

It’s no secret that this area is sparsely populated. At last count, the territory had roughly 41,000 residents in 1.3 million km2. (Fun fact: the Northwest Territories used to make up 75% of the land area of Canada. It has since been split up among 5 provinces and into two other territories. With the formation of Nunavut in 1999, it was reduced to being only twice the size of Texas.) If so few people live there, why should we care if they have a few fires?

If you are so heartless as to ask that question, you are also short-sighted and selfish. For one, I already explained the damage that the fires are doing. For two, fires like these impact more than just the immediate area and more than just Canada. Let me explain that but, first, let me show you the fires themselves – as seen by VIIRS – over the course of the last month.

Animation of VIIRS Fire Temperature RGB images 24 June - 25 July 2014

Animation of VIIRS Fire Temperature RGB images 24 June - 25 July 2014

You will have to click on the above image, then on the “933×700” link below the banner to see the animation at full resolution. It is 15 MB, so it may take a while to load if you have limited bandwidth. What you are looking at is the Fire Temperature RGB in the area of Great Slave Lake, the area hardest hit by this fire season. There are a lot of fires visible over the course of the month!

See how the larger fires spread out? They look like the large scale version of an individual flame spreading out on a piece of paper. (Don’t try to replicate it at home. I don’t want you catching your house on fire!) Of course, the spread of the fires is dependent on the winds, humidity, moisture content in the vegetation, and the firefighters – if they’re doing their job.

Now, these weren’t the only fires in Canada during this time. Check out this Fire Temperature RGB image from 15 July 2014 and see how many (rather large) fires there are in British Columbia and Saskatchewan:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 21:08 UTC 15 July 2014

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 21:08 UTC 15 July 2014

Make sure to click through to the full resolution version. I counted 9 large fires in British Columbia, 1 in Alberta (partially obscured by clouds) and 6 in Saskatchewan. If you look closely, you might also spot 3 small fires in Washington plus more small fires in Oregon. (“Small” here is compared to the fires in Canada.)

Now, all these fires means there must be smoke and, because VIIRS has channels in the blue and green portions of the visible spectrum, we can see the smoke clearly. This is one of the benefits of the True Color RGB (in addition to what we discussed last time). If I tried to create another animation, like I did above, showing the extent of the smoke plumes it would be so large it might crash the Internet. Instead, here are some of the highlights (or low-lights, depending on your point of view) from the last month.

On 6 July 2014, the smoke is largely confined to the area around Great Slave Lake:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:35 UTC 6 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:35 UTC 6 July 2014

The very next day (7 July 2014) the smoke is blown down into Alberta and Saskatchewan (almost as far south as Calgary and Saskatoon):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:16 UTC 7 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:16 UTC 7 July 2014

One day later (8 July 2014) smoke is visible down into Montana, North Dakota and beyond the edge of the image in South Dakota (a distance of over 2000 km [1200 miles] from the source!):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:57 UTC 8 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:57 UTC 8 July 2014

 

On the 12th of July, you could see a single smoke plume stretching from Great Slave Lake all the way into southwestern Manitoba (plus smoke over British Columbia from their fires):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:23 UTC 12 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:23 UTC 12 July 2014

When the fires really get going in British Columbia a few days later, the smoke covers most of western Canada. On 15 July 2014, smoke is visible from the state of Washington to the southern reaches of Nunavut and Hudson Bay:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:27 UTC 15 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:27 UTC 15 July 2014

One day later (16 July 2014), and it appears that smoke covers 2/3 of Alberta, nearly all of Saskatchewan, all of western Manitoba, southern Nunavut, southeastern Northwest Territories, and most of Montana and North Dakota. There is also smoke over Washington, Oregon and northern Idaho:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:48 UTC 16 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:48 UTC 16 July 2014

A quick estimate puts the area of smoke in the above image at 2.5 million km2, which is roughly a third the size of the contiguous 48 states!

With renewed activity in the fires in the Northwest Territories last week, the smoke was still going strong over Canada, impacting Churchill, Manitoba (home of polar bears and beluga whales):

VIIRS True Color RGB composite of channels M-4, M-4 and M-5, taken 20:17 UTC 23 July 2014

VIIRS True Color RGB composite of channels M-4, M-4 and M-5, taken 20:17 UTC 23 July 2014

I guess if the melting polar ice caps don’t kill off the polar bears, they can still get cancer from all this smoke. Maybe the “world’s saddest polar bear” will want to stay in Argentina.

I should add that some of my colleagues at CIRA and I have sensitive noses and were able to smell smoke right here in town (Fort Collins, Colorado) earlier this month. Plus, there were a few smoky/hazy sunsets. (Although it should be clarified that we don’t know if it was from the fires in Canada or the fires in Washington and Oregon. There weren’t any fires in Colorado at the time.) Nevertheless, the areal coverage and extent of the smoke from fires like these is immense, and can have impacts thousands of miles away from the source. And, it’s all carbon entering our atmosphere.

 

UPDATE (8/1/2014): Colleagues at CIMSS put together this image combining two orbits of data over North America from yesterday (31 July 2014), where you can see smoke stretching from Nunavut all the way down to Indiana, Ohio and West Virginia. There may even be some smoke over Kentucky and Tennessee. Witnesses at CIMSS reported very hazy skies across southern Wisconsin as a result.

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , , , , , , | Comments Off on When Canada Looks Like China

The Rise of the Paraguay Brings Down Paraguay

When was the last time you heard anything about Paraguay? Nope – they weren’t in the World Cup, that was Uruguay. (Paraguay actually finished last out of all South American teams when it came to World Cup qualifying. Sorry to remind you, Paraguayans.) A quick perusal of the web indicates that the country has a history of isolationism, so it may not come as a surprise that news out of Paraguay is few and far between.

For you non-Paraguayans in the audience: How many of you knew that Paraguay was the richest nation in South America in the mid-1800’s? Paraguay held that title right up to the point that they tried to keep Brazilian influence out of a civil war in Uruguay. That kick-started the War of the Triple Alliance, which ultimately killed more than half the population of Paraguay, strengthened Argentina as a nation, and is credited with bringing about the end of slavery in Brazil. Paraguay has never been the same since. It became the poorest country in the region – a title it has held, pretty much, through today. This has caused one reporter to say (in one of the links above) that, to Paraguayans, success is a prelude to danger.

When the national football team scores, “it makes us nervous and we panic.”

But, this isn’t a metaphor for the title of this post. The title refers to Paraguay: the River (Rio Paraguay), which has brought the worst flooding in decades to Paraguay: the Country, and displaced more than 200,000 Paraguayans. Flooding has also occurred on the Rio Paraná – the second longest river in South America – and has impacted hundreds of thousands of people in Brazil and Argentina. (You won’t get me to say that it has impacted a Brazilian people – because that is an awful, overused joke. Oh, wait. Ignore what I said I wasn’t going to say.)

Just look at what the flooding did to Iguazú Falls – one of the wonders of the world you never heard about – on the border between Argentina and Brazil:

http://www.youtube.com/watch?v=76XfV42YvBI

There are more pictures of the flooding at the falls here. Iguazú Falls is located at the head of a narrow canyon called the Devil’s Throat, where water levels were reported to be 16 meters (52 feet) above normal! It is said that this is the worst flooding since 1982-1983. (That flood event killed 170 people.)

As shown before, VIIRS is capable of viewing widespread flooding. So, what does VIIRS tell us about this flood? As it turns out, both the “Natural Color” RGB composite and the “True Color” RGB composite provide unique information, so let’s take a closer look.

If you simply want to see where the water is, look no further than the “Natural Color” RGB composite. The “Natural Color” composite uses the high-resolution bands I-01 [0.64 µm; blue], I-02 [0.87 µm; green] and I-03 [1.61 µm; red]. At these wavelengths, water is not very reflective (it absorbs more than it reflects). So, with low reflectivity in all three channels, water appears nearly black. That allows one to identify water easily. Here’s a Natural Color image from a clear day before the worst of the flooding began (2 June 2014):

VIIRS "Natural Color" image, taken 17:28 UTC 2 June 2014

VIIRS "Natural Color" image, taken 17:28 UTC 2 June 2014

That’s Paraguay in the center of the image. Rio Paraguay is the north-south river that cuts Paraguay in half (OK, maybe 60-40). Rio Paraná is the big river that marks the eastern border between Paraguay and Argentina, and turns south after acquiring Rio Paraguay’s water. (Look for the big reservoir in the upper-right, and follow that river down to the bottom of the image, left of center.) Make sure you click on the image, then on the “3298 x 2345” link below the banner to see the full resolution version. Compare that with a similar image from the only clear day at the end of the month (30 June 2014):

VIIRS "Natural Color" image, taken 17:03 UTC 30 June 2014

VIIRS "Natural Color" image, taken 17:03 UTC 30 June 2014

At first glance, the most obvious flooding occurred along the Paraná in Argentina. But flooding is noticeable along the Rio Paraguay if we zoom in for a closer look. Here’s a “before” (2 June) and “after” (30 June) overlay for the area around Paraguay’s capital city, Asunción:

[beforeafter][/beforeafter]

Drag the vertical bar over the images from left to right to compare the two. (If this “before/after” trick doesn’t work for you, try refreshing the page. It may not work at all if you’re using Google Chrome.) The flooding you see here near Asunción was associated with only a 2 m (6 ft) water rise.

Something interesting happens when we focus in on the Paraná at the Itaipú Reservoir, just upstream from Rio Iguazú:

VIIRS "Natural Color" images of Itaipu Reservoir, June 2014

VIIRS "Natural Color" images of Itaipu Reservoir, June 2014. These images have been brightened to highlight difference in reservoir color.

After the flooding, the reservoir no longer appears black. This is because the flooding washed an awful lot of dirt into the water. And it really shows up in the “True Color” RGB composite:

VIIRS "True Color" images of Itaipu Reservoir, June 2014

VIIRS "True Color" images of Itaipu Reservoir, June 2014.

The water appears more turquoise before the flood, and brown after the flood. This is because the True Color composite represents the true color of the objects in the image. It is made from channels in the blue [0.48 µm; M-3], green [0.55 µm; M-4] and red [0.67 µm; M-5] portions of the visible spectrum. Take a look again at the Iguazú Falls video above and notice how brown the water is. The True Color images capture this. The reason the water appears blue and not black in the Natural Color composite is that there is enough sediment in the water to make it reflective at 0.64 µm (the blue component of the image). The longer wavelengths in the green and red components are not sensitive to the sediment, whereas the shorter wavelengths in the True Color components are very sensitive to sediment. (This is the basis for Ocean Color retrievals.)

If we focus in on the Rio Paraná near where it meets the Rio Paraguay, we can see clearly that the Natural Color highlights where the flood waters are, and the True Color highlights the sediment in that water:

VIIRS Natural Color and True Color images of the Rio Parana, June 2014

VIIRS Natural Color and True Color images of the Rio Parana, June 2014

Unfortunately, floods on the Paraguay and Paraná rivers are not uncommon, as a resident of Asunción explains:

BONUS: The NOAA/STAR JPSS group has put together a website on the flooding in Paraguay that features my Natural Color images along with a number of other VIIRS-based products that are being developed for flood detection. A lot of people from a number of different research groups played a part in this!

Posted in Uncategorized | Tagged , , , , , , , , | Comments Off on The Rise of the Paraguay Brings Down Paraguay

Sehr Schweres Unwetter in NRW

Not having full command of the German language, “sehr schweres Unwetter” seems like an understatement. It translates as “very bad thunderstorm,” which in this case is like calling the Titanic a “very big boat”. Of course, if you live in the Great Plains, you probably refer to a supercell thunderstorm as “a little bit of rain and wind” but the storms that hit Nordrhein-Westfalen (NRW) on 9-10 June 2014 rival anything the toughest Oklahoman has experienced (minus the tornadoes). Also, keep in mind that Germany and the Low Countries have nowhere near the wide-open spaces the U.S. Great Plains are known for. Take 5 times the population of Oklahoma and cram them into a land area the size of Maryland. (Or, if you’re from Maryland, multiply your state’s population by three to approximate the population density of the area we’re talking about. Then ponder how anyone in that part of Germany is able to spend less than 18 hours per day stuck in traffic like you would be if you were suddenly surrounded by three times as many people.)

Let me set the scene for you. (If you’ve ever lived in the Midwest, you know the drill.) The air is hot and unbelievably humid. The sky is overcast. There is no wind to speak of, but there is a certain “electricity” in the air that tells you that a violent end to the heatwave is coming. Off in the distance, clouds lower and darken. A gentle rumbling of thunder slowly builds as the storm approaches. Lightning appears and becomes ever more frequent. Right before the storm hits, the winds pick up out of nowhere and… Wait! I don’t need to describe it. I can show it to you:

http://www.youtube.com/watch?v=TFbsubhW5s0

http://www.youtube.com/watch?v=9sLfWkqoIq8

EDIT: I did need to describe it, because the videos are no longer available. If you weren’t able to see the videos before they were removed, they showed scary looking clouds and nearly constant lightning approaching Bochum. In fact, there were an estimated 113,000 lightning strikes across Germany from the storm.

Germany is, apparently, a land of iPhones and GoPros and all sorts of video recording equipment, and there is no shortage of video of the storm. There are videos of the storm approaching from different perspectives (here, here and here), the strong winds and heavy rains that are more reminiscent of a tropical storm (here, here and here), footage of the lightning in slow-motion and, because this is the Internet, a 30 min. montage of storm footage set to salsa music (although one commenter says the first footage is from a storm in 2010).

The aftermath is pretty impressive also – trees and large branches down everywhere blocking roads, crushing cars and stopping the never-late German train system. In fact, 6 people were killed – mostly by falling trees. Winds were observed in the 140-150 km h-1 range (approximately 85-90 miles per hour), which puts it just below a Category 2 hurricane according to the Saffir-Simpson scale. There were even reports of baseball sized hail, something that’s not unusual in Oklahoma, but is very rare in Europe. (Here is some pretty big hail in the town of Zülpich from earlier in the day.)

Now that you’ve used up the last 90 minutes looking at YouTube videos, let’s get down to business. What do satellites tell us about this storm?

EUMETSAT put together this animation of images from the geostationary satellite Meteosat-10:

Watch that video again, preferably in fullscreen mode. First, the white boxes highlight the supercell thunderstorms over Europe between 01:00 UTC 9 June 2014 and 08:15 UTC 10 June 2014. Right before sunset on 9 June, you can see a storm moving north out of France into Belgium that seems to explode as it heads towards the Netherlands and western Germany. This is our “schweres Unwetter”. The second thing to notice is where that storm is at 02:00 UTC on the 10th. That was the time that VIIRS passed overhead.

So, without any more bloviating, here’s the high-resolution infrared (I-5) image from VIIRS:

VIIRS I-5 image from 02:07 UTC 10 June 2014

VIIRS I-5 image of severe thunderstorms over Europe from 02:07 UTC 10 June 2014

The storm that caused all the damage over Nordrhein-Westfalen has weakened and is now over northeastern Germany on its way to Poland. But, a second impressive supercell complex is pounding Belgium and the Netherlands, and taking aim at western Germany once again.

The coldest pixels are 196.5 K (-76.7 °C or -106 °F) in the storm over Benelux and 198.7 K (-74.5 °C or -102.1 °F) in the storm over northeast Germany. Another impressive thing about these storms is their size relative to the size of these countries. That Benelux storm looks like it’s at least five times the size of Luxembourg and as big as Belgium! (And I’m not counting the area of the anvil, which is even larger. I’m only counting the area containing overshooting tops.)

Since it’s nighttime, what did the Day/Night Band see? Well, the answer depends on how you display the data. You see, we’re approaching the Summer Solstice in the Northern Hemisphere, where the days are long and twilight encroaches the nighttime overpasses at these latitudes. If you try to scale the radiances from lowest = black to highest = white, you get something like this:

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014. Radiance values are displayed and scaled according to text above.

That’s not very helpful because the radiance values vary by 6 orders of magnitude across the scene and we only have 256 colors to work with to relay that information. But, we can take advantage of the fact that the Day/Night Band radiance values are, to the first order, a function of the solar and lunar zenith angles, and use this as the basis for a “dynamic scaling” that compares the observed radiance with an expected maximum and minimum radiance value that is a function of those angles. (In case you’re interested, the dynamic scaling algorithm used here is based around the error function.) This allows you to produce something like this:

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014. This image uses dynamic scaling as described in the text.

Here, we’ve lost some quantitative information (colors no longer represent specific radiance values) but we’ve gained valuable qualitative information.  Now we can see where the storms are! Notice the shadows in the overshooting tops of our Benelux storm – right where the coldest pixels are in the infrared image. We can see some of the city lights, but not others, because the twilight encroaching from the northeast is brighter than the cities in that part of the image. (It is easy to pick out London and Paris, though.) If you read the previous post, you might be wondering why there are no mesospheric waves with these storms. That’s because there is too much twilight (and moonlight) to see the airglow. (There’s also the possibility that the stratosphere and mesosphere weren’t conducive for vertically propagating waves, but you wouldn’t be able to tell that under these lighting conditions.)

Some people like to combine the infrared with the Day/Night Band into a single image. This is done by changing the opacity of one of the images and overlaying it on the other. Here’s an example of what that looks like using the dynamically scaled Day/Night Band image:

VIIRS combined IR/DNB image from 02:07 UTC 10 June 2014

VIIRS combined IR/DNB image from 02:07 UTC 10 June 2014

The light/shadow effect of the visible information adds a sort-of 3-D effect to the infrared images and, since this is the Day/Night Band, it can show where the storms are in relation to the urban areas. Here, it seems to work better for the Benelux storm than it does for the other one. (Of course, it would be better without the twilight. And, it works best with a full moon, which occurred three days later.)

Of course, if you have access to the Near Constant Contrast imagery, you don’t have to worry about scaling. The imagery is useful as-is:

VIIRS NCC image, taken at 02:07 UTC 10 June 2014

VIIRS NCC image, taken at 02:07 UTC 10 June 2014

And the combined IR/NCC image looks like this:

Combined IR/NCC image from 02:07 UTC 10 June 2014

Combined IR/NCC image from 02:07 UTC 10 June 2014

In case you’re interested, there are additional videos, animations and images of these storms from the Meteosat High Resolution Visible (HRV) channel at the EUMETSAT Image Library.

 

Posted in Uncategorized | Tagged , , , , | Comments Off on Sehr Schweres Unwetter in NRW

Severe Weather in the Mesosphere

So far (*knock on wood*), it’s been a pretty quiet year for severe weather. If you only count tornadoes, there have been 81 tornado reports from 1 January to 4 April this year. (11 of those have come just this week.) This is a lot fewer than the previous three year average of 192 tornadoes by the end of March. For that, you can thank the dreaded, terrifying “Polar Vortex” you’ve heard so much about over the winter. Tornadoes don’t like to come out when it’s cold everywhere. (Although, there was a notable exception on 31 March 2014, when a tornado hit a farm in Minnesota when the area was under a blizzard warning.)

I just said that there have been 11 tornado reports this week. Eight of those came in the past 24 hours. At the southern end of the line that brought the tornadoes to Illinois, Missouri and Texas, the severe weather included golf ball-size hail and this:

25 FEET BY 30 FEET SHED ANCHORED 3 FEET INTO
GROUND...TOTALLY RIPPED OUT AND IMPALED INTO A FENCE AND
A ROOF OF NEIGHBORING HOUSE

That report came from the National Weather Service in Corpus Christi, TX and it was caused by non-tornadic straight-line winds in Orange Grove. Winds capable of ripping a shed out of the ground, combined with golf ball-sized hail – that’s one recipe for broken windows. And it’s not a pleasant way to be awakened at 4:30 in the morning.

A couple of hours earlier, VIIRS caught this severe storm as it was rapidly growing. Here’s what the storm looked like in the high-resolution infrared channel (I-5, 11.45 µm):

VIIRS high-resolution IR image (channel I-5), taken at 08:13 UTC 4 April 2013.

VIIRS high-resolution IR image (channel I-5), taken at 08:13 UTC 4 April 2013.

Make sure you click on the image, then on the “2999×2985” link below the banner to see the full resolution image, which, for some reason, is the only version where the colors display correctly.

The storm that hit Orange Grove is the southern-most storm, with what looks like a letter “C” imprinted on the top. (That kind of feature typically looks more like a “V” and makes this an “Enhanced-V” storm, which you can learn more about here. Enhanced-V storms are noted for their tendency to produce severe weather.) For those of you keeping score at home, the coldest pixel in this storm is 184.7 K (-88.5 °C).

Compare the image above with the Day/Night Band image below (from the same time):

VIIRS Day/Night Band image, taken at 18:13 UTC 4 April 2014

VIIRS Day/Night Band image, taken at 08:13 UTC 4 April 2014

There are a few interesting features in this image. For one, there’s a lot of lightning over Louisiana, Arkansas and Mississippi. (Look for the rectangular streaks.) There’s even some lighting visible where our “Enhanced-V” is. Two, it takes a lot of cloudiness to actually obscure city lights: only the thickest storm clouds appear to be capable of blocking out light from the surface. Three: there are a lot of boats out in the Gulf of Mexico at 3 o’clock in the morning (and a few oil rigs as well). And four: notice what appear to be concentric rings circling the location where our severe storm is with its enhanced-V.

In this image, there is no moonlight (we’re before first quarter, so the moon isn’t up when VIIRS passes over at night). The light we’re seeing in those ripples is caused by “airglow”, which we’ve seen before. And the ripples themselves may be similar to what is called a “mesospheric bore.” If you don’t want to get too technical, a mesospheric bore is when this happens in the mesosphere. They are related to – but not exactly analogous to – undular bores, which you can read more about here.

Unlike the situation described for the undular bore in that last link, the waves here are caused by our severe storm. To put it simply, we have convection that has formed in unstable air in the troposphere. This convection rises until it hits the tropopause, above which the air is stable. This puts a halt to the rising motion of the convection but, some of the air has enough momentum to make it in to the stratosphere. This is called the “overshooting top“, and is where our -88°C pixels are located. (Look for the pinkish pixels in the middle of the “C” in the full-resolution infrared image.) The force of this overshooting top creates waves in the stable layer of air above (the stratosphere) that propagate all the way up into the mesosphere. The mesosphere is where airglow takes place, and these waves impact the optical path length through the layer where light is emitted. This of course, impacts the amount of light we see. The end result: a group of concentric rings of airglow light surrounding our storm.

You could make the argument that the waves we see in the Day/Night Band image are not an example of a bore. Bores tend to be more linear and propagate in one direction. These waves are circular and appear to propagate in all directions out from a central point. It may be better to describe them as “internal buoyancy waves“, which are similar to what happens when you drop a pebble into a pond. Only, in this case the pebble is a parcel of air traveling upwards, and the surface of the water is a stable layer of air. Compare the pebble drop scenario with this video of a bore traveling upstream in a river to see the difference.

In fact, if you look closer at the Day/Night Band image, in the lower-right corner (over the Gulf of Mexico) there is another group of more linear waves and ripples in the airglow that may actually be from a bore. It’s hard to say for sure, though, without additional information such as temperature, local air density, pressure and wind speeds way up in that part of the mesosphere.

By the way, you can see mesospheric bores and other waves in the airglow if you have sensitive-enough camera, like the one that took this image:

Photograph of a mesospheric bore. Image courtesy T. Ashcraft and W. Lyons (WeatherVideoHD.TV)

Photograph of a mesospheric bore. Image courtesy T. Ashcraft and W. Lyons (WeatherVideoHD.TV)

And, if you’re interested, the Arecibo Observatory has a radar and optical equipment set up to look at these upper-atmosphere waves (scroll down to Panel 2 on this page). The effect of these waves on atmospheric energy transport is a hot topic of research.

Golf ball-sized hail at the Earth’s surface is related to energy transport 100 km up in the atmosphere!

 

NOTE: This post has been updated since it was first written to clarify that the circular waves are likely not evidence of a bore, as was originally implied. They are more likely internal buoyancy waves, which are also known as gravity waves. For more information, consult your local library.

Posted in Uncategorized | Tagged , , , , , , , | 2 Comments

Hell Froze Over (and the Great Lakes, too)

This has been some kind of winter. The media has focused a lot of attention on the super-scary “Polar Vortex” even though it isn’t that scary or that rare. (I wonder if Hollywood will make it the subject of the next big horror movie in time for Halloween.) Many parts of Alaska have been warmer than Georgia, with Lake Clark National Park tying the all-time Alaskan record high temperature for January (62 °F) on 27 January 2014. (Atlanta’s high on that date was only 58 °F.) Sacramento, California broke their all-time January record high temperature, reaching 79 °F three days earlier. In fact, many parts of California had record warmth in January, while everyone on the East Coast was much colder than average. Reading this article made me think of an old joke about statisticians: a statistician is someone who would say: if your feet are stuck in a freezer and your head is stuck in the oven, you are, on average, quite comfortable.

One consequence of the cold air in the eastern United States is that Hell froze over. No, not the Gates of Hell in Turkmenistan. This time I’m talking about Hell, Michigan. Hell is a nice, little town whose residents never get tired of people telling that joke.

It has been so cold in the region around Hell that the Great Lakes are approaching a record for highest percentage of surface area covered by ice. This article mentions some of the benefits of having ice-covered Lakes, including: less lake-effect snow, more sunshine and less evaporation from the Lakes, which would keep lake levels from dropping. Although, that is at the cost of getting ships stuck in the ice, and reducing the temperature-moderating effects of the Lakes, which allows for colder temperatures on their leeward side.

This article (and many other articles I found) uses MODIS “True Color” images to highlight the extent of the ice. Why don’t they show any VIIRS images? Well, I’m here to rectify that.

First off, I can copy all those MODIS images and show the “True Color” RGB composite from VIIRS:

VIIRS "True Color" RGB composite of channels M-3, M-4 and M-5, taken 17:27 UTC 11 February 2014

VIIRS "True Color" RGB composite of channels M-3, M-4 and M-5, taken 17:27 UTC 11 February 2014

While it was a rare, sunny winter day for most of the Great Lakes region on 11 February 2014, it’s hard to tell that from the True Color imagery. I mean, look at this True Color MODIS image shown on NPR’s website. Can you tell what is ice and what is clouds?

There are ways of distinguishing ice from clouds, which I have talked about before but, it doesn’t hurt to look at these methods again and see how well they do here. First, let’s look at my modification of the EUMETSAT “Snow” RGB composite:

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 17:27 UTC 11 February 2014

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 17:27 UTC 11 February 2014

This “Snow” RGB composite differs by using reflectances at 2.25 µm in the place of the 3.9 µm channel that EUMETSAT uses. (Their satellite doesn’t have a 2.25 µm channel.) It’s easy to see where the clouds are now. Of course, now the snow and ice appear hot pink, which you may not find aesthetically pleasing. And it certainly isn’t reminiscent of snow and ice.

If you don’t like the “Snow” RGB, you may like the “Natural Color” RGB composite:

VIIRS "Natural Color" RGB composite of channels I-01, I-02 and I-03, taken 17:27 UTC 11 February 2014

VIIRS "Natural Color" RGB composite of channels I-01, I-02 and I-03, taken 17:27 UTC 11 February 2014

This has the benefit of making snow appear a cool cyan color, and has the added benefit that you can use the high-resolution imagery bands (I-01, I-02 and I-03) to create it. There is twice the resolution in this image than in the Snow and True Color RGB images. Here’s another benefit you may not have noticed right away: the clouds, while still white, appear to be slightly more transparent in the Natural Color RGB. This makes it a bit easier to see the edge of the ice on the east side of Lake Michigan and the center of Lake Huron, for example.

If you’re curious as to how much ice is covering the lakes, here are the numbers put out by the Great Lakes Environmental Research Laboratory (which is about a 25 minute drive from Hell) from an article dated 13 February 2014:

Lake Erie: 96%; Lake Huron: 95%; Lake Michigan: 80%; Lake Ontario: 32% and Lake Superior: 95%. This gives an overall average of 88%, up from 80% the week before. The record is 95% set in 1979, although it should be said satellite measurements of ice on the Great Lakes only date back to 1973.

Why does Lake Ontario have such a low percentage? That last article states, “Lake Ontario has a smaller surface area compared to its depth, so it loses heat more slowly. It’s like putting coffee in a tall, narrow mug instead of a short, wide one. The taller cup keeps the coffee warmer.”  Doesn’t heat escape from the sides of a mug as well as the top? And isn’t Lake Superior deeper than Lake Ontario? Another theory is that “Lake Ontario’s depth and the churning caused by Niagara Falls means that it needs long stretches of exceptionally cold weather to freeze.”  Does Niagara Falls really have that much of an impact on the whole lake?

So, what is the correct explanation? I’m sorry, VIIRS can’t answer that. It can only answer “How Much?” It can’t answer “Why?”

 

BONUS UPDATE (17 February 2014):

It has come to my attention that the very next orbit provided better images of the Great Lakes, since they were no longer right at the edge of the swath. Here, then, are the True Color, Snow and Natural Color RGB composite images from 19:07 UTC, 11 February 2014:

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 19:07 UTC 11 February 2014

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 19:07 UTC 11 February 2014

 

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 19:07 UTC 11 February 2014

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 19:07 UTC 11 February 2014

 

VIIRS "Natural Color" composite of channels I-01, I-02, and I-03, taken 19:07 UTC 11 February 2014

VIIRS "Natural Color" composite of channels I-01, I-02, and I-03, taken 19:07 UTC 11 February 2014

 

UPDATE #2 (18 March 2014): The Great Lakes ice cover peaked at 92.2% on 6 March 2014, just short of the all-time record in the satellite era. March 6th also happened to be a clear day over the Great Lakes, and VIIRS captured these images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 18:35 UTC 6 March 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 18:35 UTC 6 March 2014

 

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 18:35 UTC 6 March 2014

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 18:35 UTC 6 March 2014

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , , , , | Comments Off on Hell Froze Over (and the Great Lakes, too)

B-31 and the Pine Island Glacier

Nope. This post is not about a warplane, an alcoholic beverage or a “New Wave” band from the 1970s. (Those are all B-52s.) And I’m not talking about a county road in Michigan or a New York City bus line. B-31 is the rather bland name given to the massive iceberg that just broke off from the Pine Island Glacier in Antarctica. (Of course, if you tried to name every chunk of ice floating around Antarctica, how long would it take you to run out of names and just switch to random letters and numbers?)

This particular chunk of ice is special, however, as it has been described as the size of a city. Now, as a scientist, I have to say that the size of a city is a terrible unit of measurement. How big a city are we talking about? I suspect people who live in one of the ten largest cities in the world would laugh at what the people of Wyoming call a “city”. And are we talking the size of the greater metropolitan area or just what is within the city limits?

The article that describes B-31 as the size of city mentioned that it was roughly the size of Singapore, or twice the size of Atlanta. Those seem like odd choices for comparison. How many of you have a good idea of what the land area is of Singapore? And twice the size of Atlanta? They could have used New York City, which has just over twice the land area of Atlanta and people are probably more familiar with New York City. In any case, all of these size estimates have errors.

The original estimate came from this NASA MODIS image and associated caption, which put the size of B-31 as 35 km x 20 km. Now, that’s 700 km2 assuming the iceberg is a perfect rectangle, which you can see in the image that it isn’t. Singapore has a land area of 714 km2, while New York City is 768 km2 and Atlanta is 341 km2 (these are “within the city limits” numbers, not the size of the greater metropolitan area). Since the iceberg is actually smaller than the 35 km x 20 km rectangle based on the widest and longest dimensions of the iceberg, maybe “twice the size of Atlanta” is the most accurate estimate.

Anyway, MODIS is not the only satellite instrument out there capable of viewing B-31. Landsat-8 saw it in much higher resolution in another post from NASA. And, of course this entire blog is about what VIIRS can see. Now, VIIRS doesn’t have the resolution of Landsat or the highest-resolution channels on MODIS, but VIIRS has the Day/Night Band, allowing us to see the iceberg both day and night (at visible wavelengths).

To show why that is important, take a look at the infrared image (M-15, 10.7 µm) below. Images in the “infrared window” (the N-band window, according to this site) used to be the only way to detect surface features and clouds at night. At these wavelengths, the amount of radiation detected by the satellite is a function of the temperature of the objects the instrument is looking at. As always, to see the high resolution version of the image, click on it, then on the “1660×1706” link below the banner.

VIIRS IR image (M-15) taken 23:34 UTC 7 November 2013

VIIRS IR image (M-15) taken 23:34 UTC 7 November 2013

See that slightly darker gray area near the center of the image? That’s open water in Pine Island Bay, which is only slightly warmer than the ice and low clouds surrounding it. Otherwise, there isn’t much detail in this picture. What really stands out are the cold, high clouds that are highlighted by the color scale. Contrast this with a visible wavelength image from the same time (M-5, 0.67 µm):

VIIRS visible (M-5) image, taken 23:34 UTC 7 November 2013

VIIRS visible (M-5) image, taken 23:34 UTC 7 November 2013

The open water in Pine Island Bay shows up clear as day because, well, it is daytime and the ice and snow reflect a lot more sunlight back to the satellite than the open water does. Icebergs can easily be distinguished from the low clouds now. You can even see through some of the low clouds to identify individual icebergs that are not visible in the infrared image. The difference in reflectivity between the ice and water at visible wavelengths is a lot greater than the difference in brightness temperature in the 10-12 µm infrared wavelengths, and that contrast is what makes things more easily visible.

Now, it is summer down there and at these latitudes, the sun is up for most of the day (actually, all day for everywhere in this scene on the Summer Solstice, which occurred on 21 December 2013), so you could say that using the VIIRS Day/Night Band to look at this stuff is unnecessary. But, since VIIRS is on a polar-orbiting satellite, it views the poles a lot more frequently than where you or I live: every 101 minutes on average, instead of every 12 hours in the low and mid-latitudes. That means it may occasionally capture a nighttime image here or there during the short nights and will frequently capture images where the day/night terminator crosses through the scene and we still want to be able to see what’s going on then. And you need the Day/Night Band to do that.

For the first time on this blog, however, we’re not going to show the Day/Night Band data exactly. We’re going to show the Near Constant Contrast imagery product, which is produced from the Day/Night Band. You can read up more on the Near Constant Contrast product and how it’s related to the Day/Night Band here. At this point, we’ll refer to NCC and DNB rather than having to type out Near Constant Contrast and Day/Night Band all the time.

Here’s a NCC image from 7 November 2013 at 20:15 UTC where the Pine Island Glacier has been identified. B-31 is still attached to the glacier – it’s sticking out into the bay and, if you look at the high resolution version of the image, you may be able to see the crack where it has started to calve.

VIIRS Near Constant Contrast image from 20:15 UTC 7 November 2013

VIIRS Near Constant Contrast image from 20:15 UTC 7 November 2013. The Pine Island Glacier is identified.

Keep your eye on that spot as you watch this zoomed-in animation of NCC images starting from the above image to 03:06 UTC 18 November:

Animation of VIIRS NCC images of the Pine Island Glacier from 7-18 November 2013

Animation of VIIRS NCC images of the Pine Island Glacier from 7-18 November 2013

I should say that the above animation does not include images from every orbit. I’ve subjectively removed images that were too cloudy to see anything as well as images where the VIIRS swath didn’t cover enough of the scene. This left 25 images over the 11 day period. Even so, VIIRS captured the moment of B-31 breaking free quite well.

Imagine the sound that this 600+ km2 chunk of ice made as it broke free. I bet it sounded something like this glacier calving event in Greenland:

 

One of the articles linked to above mentioned the importance of tracking such a large iceberg, because it could impact ships in the area. (Just this week a ship got stranded in ice off the coast of Antarctica.) So, I decided to see if VIIRS could track it. The results are in the MP4 video clip linked to below. You may need an appropriate browser plug-in or add-on (or whatever your browser calls it) to be able to view the video.

Animation of VIIRS NCC images from 7 November – 26 December 2013 (.mp4 file)

That’s 50 days of relatively cloud-free VIIRS NCC images (7 November – 26 December 2013), compressed down to 29 seconds. Go ahead, watch the video more than once. Each viewing uncovers additional details. Notice how B-31 doesn’t move much after 10 December. Notice how ice blocks the entrance to Pine Island Bay at the beginning of the loop, then clears out by the end of the loop. Notice all the icebergs near the shore that are pushed or pulled or blown out to sea from about 20 December through the end of the loop. Notice that B-31 isn’t even the biggest chunk of ice out there. Notice the large ice sheet on the west side of Pine Island Bay that breaks up right at the end of the loop. In fact, here’s another zoomed-in animated GIF to make sure you notice it:

Animation of VIIRS NCC images from 20-26 December 2013

Animation of VIIRS NCC images from 20-26 December 2013

That area of ice is much larger than B-31! (Dare I say, as large as the state of Rhode Island? Probably not, because then you’ll just think of how Rhode Island is the smallest US state, so it can’t be very impressive. It’s also not very accurate since that estimate is based on eye-balling it and thinking it looks like it could be four times the size of B-31.)

Of course, we are heading towards the middle of summer in the Antarctic when the ice typically reaches its minimum extent. So the ice breaking up isn’t unusual. Plus, large calving events occur on the Pine Island Glacier every few years. But, the B-31 event is noteworthy because Pine Island Glacier holds about 5% of the total freshwater contained on Antarctica.  It’s also the site of an ongoing field experiment where researchers are investigating glacier-ocean interactions. You can read up on what it’s like to install instruments on a glacier while living in a tent on the coldest continent 1000 miles from any other human settlement in this article. (That article doesn’t say if any instruments are still stuck in B-31 and floating out to sea, though.) And, if you’re curious, Pine Island Glacier has its own Twitter account. So far, the conclusions are that Pine Island Glacier is thinning, receding and speeding up. Large calving events are just one piece of the puzzle, but an important piece to understand since they contribute to sea level rise.

The calving process of B-31 was first noticed by NASA researchers noticing a crack forming in Pine Island Glacier while flying over the area in October 2011 – before VIIRS was even launched. But, VIIRS was there to capture the end result of that crack two years later!

 

UPDATE (22 April 2014): B-31 has continued to drift towards the open ocean. Researchers at NASA have been monitoring the movement of the massive iceberg since it first calved, and have put together their own video here, which tracks B-31 from the time of my video above into mid-March 2014.

Posted in Uncategorized | Tagged , , , , , , , , | Comments Off on B-31 and the Pine Island Glacier