

Quick Guide

What is METimage?

EUMETSAT's next generation polar-orbiting satellite constellation is Metop Second Generation (Metop-SG), which will include the Metop-SGA1 satellite. METimage is a scanning optical imaging radiometer onboard Metop-SGA1. The instrument consists of 20 spectral channels, expanding upon the six channels of the legacy Advanced Very High Resolution Radiometer (AVHRR), and is comparable to imagery from JPSS VIIRS. METimage provides high resolution imagery for environmental monitoring and nowcasting applications, and supports regional and global Numerical Weather Prediction (NWP).

Thunderstorms are seen over the northern Bahamas and the Atlantic Ocean, while fair weather cumulus can be spotted across Florida at ~1626 UTC, 25 September 2025. The METimage True Color RGB imagery is courtesy of EUMETSAT.

METimage and How it Compares to VIIRS

	Metop SGA1 - METimage	JPSS - VIIRS
Scan Type	Cross-Track Scanning Radiometer	Cross-Track Scanning Radiometer
Swath Width and Orbit	~2700 km, Sun-synchronous	~3000 km, Sun-synchronous
Coverage & Number of Channels	Global, 20 Channels	Global, 22 Channels
Spatial Resolution	VII Bands @ 500-m	I-Bands @ 375-m, M-Bands & DNB @ 750-m
Equatorial Overpass Time and Temporal Resolution	0930 local time. *1 to 2 day and night overpasses across CONUS. More frequent coverage over Alaska.	1330 local time. *3 to 6 day and night overpasses across CONUS. More frequent coverage over Alaska.

*Assumes 1 METimage and 3 VIIRS instruments

METimage

Water Vapor Imagery: METimage contains three water vapor channels. The solar water vapor band at 0.914 μm is sensitive to low-level water vapor in the boundary layer. The 6.725 μm and 7.325 μm channels sense higher-level water vapor similar to MODIS.

Oxygen-A Bands and CO₂ Channel: The 0.752 μm and 0.763 μm Oxygen-A bands and the 13.345 μm CO₂ channel are used for cloud height retrievals. The CO₂ band is similar to GOES ABI.

Pixel Growth: All METimage bands have 500 m native resolution at nadir, degrading to ~2.5 km toward the swath edge.

METimage Does Not Have: a Day/Night Band (DNB) or 0.412 μm and 0.488 μm blue bands.

Fires: METimage mid-wave IR bands have lower saturation brightness temperatures than VIIRS, so fires saturate more quickly.

Future Satellites: METimage on Metop-SGA2 & Metop-SGA3.

VIIRS

DNB: The unique band provides nighttime visible imagery for observing environmental features and anthropogenic light sources at 750-m spatial resolution.

Blue Bands: VIIRS includes three bands located in the blue portion of the visible spectrum: 0.412 μm , 0.445 μm , and 0.488 μm .

High Resolution Data: VIIRS has five Imagery Bands (I-bands) at 375-m resolution, finer than METimage.

Preserved Pixel Size: VIIRS uses a pixel aggregation scheme that limits pixel growth toward the swath edge and preserves pixel shape.

VIIRS Does Not Have: dedicated water vapor or CO₂ absorption bands.

Future Satellites: VIIRS will fly on JPSS-4 and JPSS-3, expected to launch during the next decade.

Both Instruments Have: Broadly similar visible, near-infrared, and infrared imaging channels that support many of the same single-band and multispectral applications. Both instruments provide direct broadcast capability for low-latency data access, benefiting nowcasting, especially at higher latitudes.

Both Instruments Do Not Have: An ozone band near 9.3 μm , which is required for the Airmass RGB.

Quick Guide

Channel Comparison: METimage and VIIRS

METimage Channel	METimage - Central Wavelength (μm)	Type	VIIRS Channel	VIIRS - Central Wavelength (μm)
-----	-----	Visible / Reflective	M1	0.412 μm
VII - 4	0.443 μm	Visible / Reflective	M2	0.445 μm
-----	-----	Visible / Reflective	M3	0.488 μm
VII - 8	0.555 μm	Visible / Reflective	M4	0.555 μm
-----	-----	Visible / Reflective	I1	0.640 μm
VII - 12	0.668 μm	Visible / Reflective	M5	0.672 μm
-----	-----	Visible / Reflective	DNB	0.5 - 0.9 μm
VII - 15	0.752 μm	Near-Infrared	M6	0.746 μm
VII - 16	0.763 μm	Near-Infrared	-----	-----
VII - 17	0.865 μm	Near-Infrared	M7 I2	0.865 μm 0.865 μm
VII - 20	0.914 μm	Near-Infrared	-----	-----
VII - 22	1.240 μm	Shortwave Infrared	M8	1.240 μm
VII - 23	1.375 μm	Shortwave Infrared	M9	1.378 μm
VII - 24	1.630 μm	Shortwave Infrared	M10 I3	1.610 μm 1.610 μm
VII - 25	2.250 μm	Shortwave Infrared	M11	2.250 μm
VII - 26	3.740 μm	Mid-wave Infrared	M12 I4	3.700 μm 3.740 μm
VII - 28	3.959 μm	Mid-wave Infrared	-----	-----
VII - 30	4.050 μm	Mid-wave Infrared	M13	4.050 μm
VII - 33	6.725 μm	Longwave Infrared	-----	-----
VII - 34	7.325 μm	Longwave Infrared	-----	-----
VII - 35	8.540 μm	Longwave Infrared	M14	8.550 μm
VII - 37	10.690 μm	Longwave Infrared	-----	-----
-----	-----	Longwave Infrared	M15	10.763 μm
-----	-----	Longwave Infrared	I5	11.450 μm
VII - 39	12.020 μm	Longwave Infrared	M16	12.013 μm
VII - 40	13.345 μm	Longwave Infrared	-----	-----

The table highlights similarities and differences in channel central wavelengths between METimage and VIIRS. The spatial resolution of METimage's channels are 500-m, while VIIRS M-bands and I-bands are 750-m and 375-m resolutions, respectively.

Tropical Cyclones: During the middle of the day on 28 October 2025, Category 5 Hurricane Melissa made landfall over Jamaica. Both METimage and the VIIRS instruments captured the cyclone as it approached the island. METimage had the earlier overpass, while VIIRS passed over a few hours later near the time of landfall.

METimage True Color RGB overpass at ~1500Z, 28 October 2025. Image courtesy of EUMETSAT.

VIIRS True Color RGB observes Hurricane Melissa at ~1748Z, 28 October 2025.

Resources

[EUMETSAT](#)

[Metop Second Generation, METimage - First Images](#)

[Metop SG-A and SG-B: Facts and Figures](#)

[METimage Data Guide](#)

[EUMETSAT User Preparation Webinar](#)

[EPS-SG METimage Overview and Products](#)

[VAWS Webinar](#)

[Intro to the Metop-SG Constellation and METimage](#)

[CIRA](#)

[JPSS VIIRS Calibration, Validation, & Visualization](#)

[METimage: Algorithm Description Document](#)

[VIIRS Data: CIRA SLIDER - JPSS Sectors](#)

[CONUS, Northern Hemisphere](#) and

[Southern Hemisphere](#)