The Mystery Channel

I wrote the first post on this blog more than 5.5 years ago. Since then, I have covered a multitude of instances where VIIRS imagery has helped us learn about the world we live on. But, during that time there has been one channel on VIIRS that has never been mentioned. Not once. And, what may be even more surprising is that this channel is not featured on any of the next generation geostationary satellites. It’s not on the GOES-R Program’s ABI, not on Himawari’s AHI, not on the upcoming Meteosat Third Generation FCI. Those with photographic memories will know exactly which channel I’m talking about. The rest of you will just have to guess, or go back through the archives and use the process of elimination to figure it out.

So, is this channel useless? Why is it on VIIRS, but not ABI? Which one is it? The suspense is killing me! I can’t answer that second question, but I can definitely answer the third and give some insights to #1. (The short answer to #1 is “No” – otherwise we wouldn’t be here.) But, to do this, we have to remember why Lake Mille Lacs disappeared earlier this year. It might also be good to remember our earlier posts on Greenland, because that is the location of our most recent mystery.

We begin with the view of Greenland from GOES-16 back at the end of July 2017:

This video covers the period of time from 0700 UTC 27 July to 2345 UTC 28 July. If you follow this blog, you already know that this the “Natural Color” RGB composite, which in GOES-16 ABI terms is made of bands 2 (0.64 µm), 3 (0.86 µm) and 5 (1.61 µm). Notice the whitish coloration over the central portion of Greenland. This is the feature of interest.

We know from experience (and earlier blog posts) that snow and ice are not very reflective at 1.6 µm, which is why it takes on that cyan appearance in Natural Color imagery. Whitish colors are indicative of liquid clouds. But, the feature of interest doesn’t appear to move over this two day period. (If you look closely, it does appear to shrink a little, though.) It’s hard to believe a cloud could be that stationary over a two day period.

Let’s isolate the 1.6 µm band by itself to see if we can tell what’s going on:

Shortly after the first sunrise, you can see a patch of liquid clouds over the ice that quickly dissipate, leaving our feature of interest exposed. Clouds appear again near the first sunset, and late in the second day (28 July). The feature of interest isn’t as bright as those clouds, but is brighter than the rest of the ice and snow on Greenland.

At shorter wavelengths, nearly all of Greenland is bright, so our feature of interest isn’t as noticeable. Here’s the 0.86 µm band from ABI:


 
But, it shows up at the two longer shortwave IR bands. Here’s the 2.25 µm band:


 
The same is true for 3.9 µm, but I won’t waste time showing it.

So, what is going on? What is our feature of interest?

Well, the problem is, Greenland is way off on the limb from the perspective of GOES-16’s current location. Perhaps we need a better view from something that passes directly overhead of Greenland. Hmmm. What could that be?

This is a VIIRS blog after all, so I think you know the answer to my rhetorical question. Let’s start with our good old friend, Natural Color, which we should all be familiar with:

S-NPP VIIRS Natural Color RGB composite of bands M-5, M-7 and M-10 (14:40 UTC 27 July 2017)

S-NPP VIIRS Natural Color RGB composite of bands M-5, M-7 and M-10 (14:40 UTC 27 July 2017)

You can tell by the shadows cast where the clouds are, even if they are a similar color to the background of snow and ice on Greenland. But, the feature of interest isn’t very obvious. There appears to be an area of lighter cyan over the central portions of the ice sheet, but it definitely doesn’t look like a cloud. Let’s break it up into single channels, like we did with ABI, starting with M-7 (0.86 µm):

S-NPP VIIRS channel M-7 (14:40 UTC 27 July 2017)

S-NPP VIIRS channel M-7 (14:40 UTC 27 July 2017)

Again, it’s all bright. How about M-10 (1.61 µm)?

S-NPP VIIRS channel M-10 (14:40 UTC 27 July 2017)

S-NPP VIIRS channel M-10 (14:40 UTC 27 July 2017)

Now, Greenland appears all dark. For completeness, let’s look at M-11 (2.25 µm):

S-NPP VIIRS channel M-11 (14:40 UTC 27 July 2017)

S-NPP VIIRS channel M-11 (14:40 UTC 27 July 2017)

It’s subtle, but you can see a hint of brightening over the south-central portion of the ice sheet. (In case you’re wondering why it looks so much darker in VIIRS than ABI, it’s because our visible and near-IR GOES-16 imagery uses “square root scaling” by default. In image processing terms, it’s the same as a gamma correction of 2. The VIIRS images don’t have that.) Now, for the ace up my sleeve – the one channel that has never appeared before on this blog:

S-NPP VIIRS channel M-8 (14:40 UTC 27 July 2017)

S-NPP VIIRS channel M-8 (14:40 UTC 27 July 2017)

This is M-8, centered at 1.24 µm. Its primary use is listed in the JPSS Program literature as “cloud particle size.” Based on reading the documentation for the cloud products, it appears M-8 is used operationally only as a backup for M-5 (0.67 µm) in the cloud optical thickness and effective particle size retrievals under certain conditions, or when M-5 fails to converge on solution. One of those conditions is the retrieval of cloud properties over snow and ice. As we shall see, however, M-8 is very good at determining the properties of the snow and ice itself.

M-8 shows quite clearly the bright central portion of Greenland (our feature of interest) surrounded by dark at the edges of the ice sheet (even without any gamma correction). Snow-free areas appear brighter than the edge of the ice sheet because, much like M-7/0.86 µm, vegetation is also highly reflective at 1.24 µm.

This example shows what we’ve long known. Snow and ice are highly reflective in the visible (and very near IR) portions of the electromagnetic spectrum. In the short- and mid-wave IR, snow and ice are absorbing and cold. This means they don’t emit or reflect much radiation at these wavelengths. That’s why they appear dark at 1.61 and 2.25 µm. M-8 straddles the boundary of these regions as exemplified by this graph:

Reflectance spectra of snow

Reflectance spectra of snow. The highlighted portion shows the bandwidth of VIIRS channel M-8.

The information in this graph comes from the ASTER Spectral Library created by NASA. Note that the reflectance of snow in M-8 is highly variable and a function of the snow grain size. This may explain why the central portion of Greenland’s ice sheet appears so bright, while the edges are so dark in M-8. Another explanation is that, much like in Minnesota, snow melt causes a drop in reflectance. Slush just isn’t as reflective as fresh snow, and M-8 is highly sensitive to this.

The last week in July was a very warm one for Greenland. The capitol, Nuuk, recorded highs in the 60s (°F), or upper-teens (°C), peaking at 71°F (22°C) on 29 July 2017. Normal for that time of year is 52°F (11°C).

Since Greenland is pretty far north, we can take advantage of the multiple VIIRS overpasses per day and really capture this snowmelt:

Animation of daytime VIIRS M-8 images (27-29 July 2017)

Animation of daytime VIIRS M-8 images (27-29 July 2017)

This animation, which you may have to click on to get it to play, covers the three day period 27-29 July 2017. Here’s it is obvious what impact the heat wave is having on Greenland’s ice and snow. Our “feature of interest” really shrinks over this period of time.

In early August, the snow and ice start to recover and become more reflective again. Here’s an extended animation that includes the relatively clear days of 17 July, 20 July and the entire period from 30 July to 3 August 2017:

Animation of VIIRS M-8 (17 July - 3 August 2017)*

Animation of VIIRS M-8 (17 July – 3 August 2017)*

Our “feature of interest” is unmelted snow/ice on Greenland’s ice sheet.

Now, this is the VIIRS Imagery Team Blog. We can do a better job of highlighting this snowmelt by combining it with other channels in an RGB composite. One way is to replace M-7 with M-8 in the Natural Color RGB:

Animation of VIIRS Natural Color imagery composites of channels, M-5, M-8 and M-10 (17 July - 3 August 2017)*

Animation of VIIRS Natural Color imagery composites of channels, M-5, M-8 and M-10 (17 July – 3 August 2017)*

Fresh, fine snow has the cyan color we’re all familiar with, but now coarse snow and melting snow are a deeper, more vivid blue color.

Another option takes a page out of the EUMETSAT Snow playbook. Here’s one with M-8 as the blue component, M-7 as the green component and M-5 as the red component:

Animation of VIIRS RGB composite using channels, M-8, M-7 and M-5 (17 July - 3 August 2017)*

Animation of VIIRS RGB composite using channels, M-8, M-7 and M-5 (17 July – 3 August 2017)*

Now the fresh, fine snow is pale yellow, while the coarse snow and snowmelt are a darker yellow-orange. The question is: which one do you like better?

So, I have now talked about every band on VIIRS. And, I learned that the last time I looked at melting on Greenland, I should have been looking at M-8 from the very beginning.

Posted in Uncategorized | Tagged , , , , , , , , , , , , | 2 Comments

There’s Something in the Water

In the fast paced world of weather, Hurricane Irma is old news. There’s already a Wikipedia page on it. But, people that were in Irma’s path are still cleaning up (at least at the time I’m writing this). In case you’ve already forgotten, or were living in a Faraday cage underground, here’s a quick recap. Among the factoids: Irma was the strongest hurricane ever recorded in the Atlantic basin and it was a Category 5 (the highest the scale goes) for the longest period of time of any Atlantic hurricane. The island of Barbuda took a direct hit from Irma and is now desolate and decimated. Jacksonville, which did not take a direct hit, received record flooding due to winds blowing the St. Johns River inland, while heavy rains inland were trying to flow out to sea. And, the hearing impaired mocked Manatee County, Florida for using a sign language interpreter that didn’t know sign language. Just in the U.S. alone, 26 people died.

Satellite imagers with higher resolution than VIIRS captured the damage. First, Landsat (~30 m spatial resolution) showed how vegetation was stripped from the soil in Antigua, Barbuda and the Virgin Islands. And, Worldview-4 (~30 cm resolution!) captured images of damaged structures in the Florida Keys and other islands in the Caribbean for Digital Globe (not a paid advertisement or endorsement). Our newest satellite, GOES-16, monitored Irma all the way from birth to death. (Shout out to my collegues at CIRA who provided the imagery used in that article!) And, of course, the VIIRS Day/Night Band showed the extent of power outages in Florida, which I won’t talk about further because I’ve already been beaten to it.

But, VIIRS works during the day, too. And it captured an aspect of Irma’s impact not mentioned above. We’ll start by taking a look at a VIIRS True Color image from 31 August 2017:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (1840 UTC 31 August 2017)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (1840 UTC 31 August 2017)

Remember, you can click on an image to bring up the full resolution version. Let’s compare this “before” image with one taken after Irma hit:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (1813 UTC 12 September 2017)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (1813 UTC 12 September 2017)

Notice anything different between the two images?

Apart from all the clouds (which are always different between two images), it shouldn’t take long to notice a change in the water surrounding Florida and, to a lesser extent, the Bahamas. You see, hurricanes bring with them heavy rains, high winds and waves and storm surge. The winds and waves churn up sediment at the bottom of the ocean – like this guy, only more, at least in shallow areas like the Florida Keys and the Bahamas. The storm surge causes beach erosion and flooding along the coasts while the heavy rains cause inland flooding (of both the “flash” and “river” variety). And, when was the last time you saw crystal clear floodwater? Floodwater is filled with dirt from the soils it eroded. Plus, there’s often garbage, raw sewage and toxic chemicals that may make it as hazardous as the hurricane itself. And, let’s not mention floating fire ant colonies because no one want to think about those – except I just did.

If you look closely, you may even see this sediment and pollution beginning to be entrained in currents in the Gulf of Mexico as well as on the Atlantic side of Florida. And, remember that the Atlantic side of Florida is home to the Gulf Stream (the current, not the aircraft).

Of course, we don’t have to just compare two days. We can monitor this sediment and pollution for as long as it’s there. Here’s a video showing both the before image (31 August 2017) and 6 days after (12-17 September 2017):


 
You can view it in full screen by clicking on the icon in the lower right corner of the video. After watching it several times, you should see two things: sediment around the Florida Keys does get pulled into the Gulf Stream, with visible eddies where the polluted water meets the clean water; and the polluted water generally gets darker with time. The latter is due to the fact that more of the dirt and sand and garbage settle out with time, slowly restoring the ocean to its pre-Irma appearance.

You might also notice the ocean around the Bahamas is always lighter in color. This is true even in the “before” image. This is because the water is very shallow in the Bahama Banks, and you can see all the way to the bottom. But, offshore on the west side of the largest island (Andros) the water becomes nearly white after Irma’s passage:

Comparison of VIIRS True Color images before and after Hurricane Irma (2017)

Comparison of VIIRS True Color images before and after Hurricane Irma (2017)

Go back to the video and see that it barely darkens over time. It is possible that, just like flood-induced erosion changes the landscape on the ground, the storm-induced waves and surge may have altered the underwater topography (“bathymetry”) of the Grand Bahama Bank and made the water even shallower. We’ll just have to wait and see how dark it gets.

Postscript: our VIIRS-like geostationary imager, the Advanced Baseline Imager (ABI) on GOES-16 also saw this sediment in the waters off the coast of Florida: click here. Remember, ABI doesn’t have a green wavelength visible band, but that’s no problem for CIRA’s Synthetic True Color imagery! [/end shameless plug]

Posted in Uncategorized | Tagged , , , , , , , , | 1 Comment

Steve and the Color Purple

It’s not often that a new discovery takes place that baffles the minds of lifelong scientists. This is a story about one that seems to have gone viral over the last few days. The abbreviated version (summarized from this article, this article, and this article, and many others like it) is as follows:

A group of dedicated aurora photographers noted a particular type of aurora that was different from what we normally think of. Instead of a rapidly changing curtain of light glowing green or red, it is a single arc of light, “purple” in color, with less apparent motion than a normal aurora. It doesn’t appear to move with the Earth’s magnetic field. The picture that accompanies every article about it is this one:

Photograph credited to Dave Markel Photography

Photograph credited to Dave Markel Photography

The early guess was that it’s an example of a “proton arc” – a type of aurora caused by high energy protons rather than electrons. (Do a Google Image Search for “proton arc” and you’ll see many other examples.) However, the plot thickened when an expert on the aurora, Prof. Eric Donovan at the University of Calgary, debunked that guess based on the fact that proton arcs are not visible to the human eye. This was backed up by a graduate student at the University of Alaska-Fairbanks. Not knowing what else to call it, the dedicated aurora photographers named it Steve. No joke. (It comes from the animated movie, Over the Hedge.) The name has caught on, and now the internet is full of photographic examples of “Steve”. Here’s a time lapse video.

The Aurorasaurus Project has compiled a list of things we know about Steve. Our expert aurora professor matched up a known time and location of a Steve photograph with an overpass of the European Space Agency’s Swarm satellites and found this out:

“As the satellite flew straight though Steve, data from the electric field instrument showed very clear changes. The temperature 300 kilometres (185 miles) above Earth’s surface jumped by 3,000°C (5,400 degrees Fahrenheit) and the data revealed a 25 kilometre (15.5 mile) wide ribbon of gas flowing westwards at about 6 km/s (3.7 miles per second) compared to a speed of about 10 m/s (32.8 feet per second) either side of the ribbon.”

So, while we don’t exactly know what causes “Steve”, we do know that it is relatively common. (Do that Google Image Search for “proton arc” again for proof.) And we know it’s not a proton arc. Of course, the question that is relevant to us on this blog is: Can the VIIRS Day/Night Band see Steve?

There was a significant geomagnetic storm 22-23 April 2017 that may provide the answer. One of the Alberta Aurora Chasers (our dedicated group of aurora photographers) took this picture and, in the comments, noted the location (Lake Minnewanka, Alberta) and approximate time (“maybe 12:30” AM on the 22nd). Compare that with the nearest Day/Night Band image:

VIIRS Day/Night Band image (08:12 UTC 22 April 2017)

VIIRS Day/Night Band image (08:12 UTC 22 April 2017)

I put a gold star on there to indicate the location of Lake Minnewanka. Don’t see it? Here’s a close-up:

VIIRS Day/Night Band image above zoomed-in on Lake Minnewanka.

VIIRS Day/Night Band image above zoomed-in on Lake Minnewanka. The gold star indicates the location of the lake.

Unfortunately, Lake Minnewanka is outside the VIIRS swath. But, Aurorasaurus says Steve is often hundreds or thousands of miles long, and oriented east-west, so it should extend into the VIIRS swath. Now, this VIIRS image was taken at about 2:15 AM local time, almost two hours after the photograph was taken. Aurorasaurus also says Steve is visible on the order of minutes, “up to 20 minutes or more”. So, maybe Steve disappeared in the time between the two images. I certainly don’t see any straight or smooth arc of light near the star that resembles Steve. Although, just north of Calgary (the closest city within the VIIRS swath to Lake Minnewanka) there is faint evidence of aurora light, and it is on the equator-ward side of the aurora, which is consistent with previous observations.

The streaks of light visible near Calgary (and general streakiness across the whole aurora) are due to the way the VIIRS instrument scans the scene and the high-temporal variability of the aurora, which we’ve discussed before. But, as I mentioned, these streaks don’t extend for hundreds or thousands of miles.

Maybe, VIIRS had better luck on the next overpass (~3:55 AM local time):

VIIRS Day/Night Band image (09:53 UTC 22 April 2017)

VIIRS Day/Night Band image (09:53 UTC 22 April 2017)

Again, nothing jumps out to say, “Aha! That’s Steve!” So, was Steve there and VIIRS failed to see it? Or, was Steve not there at the time of the VIIRS overpass? The answer to that depends in part on the definition of “purple”.

Is Steve really “purple” as people describe? Or, is it violet? Wikipedia actually has a good section on this (at least, until someone edits it). There’s also the page discussing the “Line of Purples“. The problem stems from the fact that violet is a color similar to purple, but is physically very different. Violet is the name given to a specific wavelength range of light, specifically the visible portion of the spectrum less than 450 nm. Purple is a combination of blue and red wavelengths – blue being wavelengths between ~450 nm and ~495 nm and red being anything visible above ~620 nm. Violet and purple look similar to us because the cone cells in our eyes have a similar response to both colors. However, in the RGB color space of the computer you’re viewing this on, and in the color cameras used to take pictures of Steve, violet is impossible to duplicate. This is because violet is not a combination of red, green and blue – it’s its own wavelength. The red, green and blue light emitting diodes (or phosphors on a plasma screen) don’t emit violet wavelengths. Your camera stores the information it collects in RGB color space, too, and has to approximate violet the same way your computer does – by making it a bluer shade of purple. Depending on the camera, the detectors used may not even be sensitive to violet light.

So, what does this mean for VIIRS? The Day/Night Band is not sensitive to radiation at wavelengths shorter than ~500 nm, which includes blue and violet. But, it is sensitive to red and beyond – up to ~900 nm. So, if Steve really is purple, the Day/Night Band will only be sensitive to the red component of it. (It would be more faint, but VIIRS would likely be sensitive to it, given that it is sensitive to airglow, which is much more faint than the aurora.) If Steve is really violet, than the Day/Night Band won’t see it at all.

So, can the Day/Night Band detect Steve? I can’t answer that based on this information. We will have to wait for another dedicated aurora photographer to take a picture of Steve at a time and place when VIIRS is directly overhead. Feel cheated by that? Just enjoy the images of the aurora above. And, here are a few more from this event:

VIIRS Day/Night Band image (11:34 UTC 22 April 2017)

VIIRS Day/Night Band image (11:34 UTC 22 April 2017)

VIIRS Day/Night Band image (07:53 UTC 23 April 2017)

VIIRS Day/Night Band image (07:53 UTC 23 April 2017)

VIIRS Day/Night Band image (09:34 UTC 23 April 2017)

VIIRS Day/Night Band image (09:34 UTC 23 April 2017)

Don’t forget to click on them to see the full resolution!

UPDATE (13 October 2017): Over the years, I have looked at a number of Day/Night Band images of the aurora. During that time, I’ve noticed some “auroras” that appear to be very “Steve”-like. One example is shown in the image below from 17 January 2015.

VIIRS Day/Night Band image (13:09 UTC 17 January 2015)

VIIRS Day/Night Band image (13:09 UTC 17 January 2015)

The question is: is this an example of Steve? Or, just a less active aurora?

Of course, being over a remote part of northern Alaska, it’s unlikely anyone got a photograph to prove it was Steve. We’ll still have to wait for the perfect alignment of Steve, Steve-hunters and VIIRS to know if the Day/Night Band can (or cannot) detect them.

Posted in Uncategorized | Tagged , , , | 2 Comments

On the Disappearance of Lake Mille Lacs

Two weeks ago, one of Minnesota’s 10,000 lakes disappeared, leaving them with only 9,999. And, it wasn’t a small one, either. It was the state’s second largest inland lake. But, this is not like Goose Lake, which actually did dry up. The lake in question simply became temporarily invisible. So, no need to panic, fishing and boating enthusiasts. But, as you’ll see, the term “invisible” can be just as ambiguous as the term “lake”.

Let’s start with the fact that Minnesota doesn’t have 10,000 lakes. Their slogan is a lie! Depending on how you define a lake, Minnesota has 21,871, or 15,291, or 11,842. But, Wisconsin might have more (or less) and likes to argue with Minnesota about that fact. Michigan might have way more (62,798) or way less (6,537). And, they all pale in comparison to the number of lakes in Alaska. Here is an article that explains the situation nicely.

With that out of the way, today’s story comes from “current GOES” and what one colleague noticed during a cursory examination of GOES Imager images. Here’s the GOES-13 visible image from 19:30 UTC 27 January 2017:

GOES-13 visible image, taken 19:30 UTC 27 January 2017

GOES-13 visible image, taken 19:30 UTC 27 January 2017

Compare that with the visible image from 19:15 UTC 2 February 2017:

GOES-13 visible image, taken 19:15 UTC 2 February 2017

GOES-13 visible image, taken 19:15 UTC 2 February 2017

Notice anything different between the two images over Minnesota? No? Then let’s flip back-and-forth between the two, with a giant, red arrow pointing to the area in question:

Animation of the above images

Animation of the above images. The red arrow points to Lake Mille Lacs.

The red arrow is pointing to the location of Lake Mille Lacs. You might know it as Mille Lacs Lake. (Either way, it’s name is redundant; “Mille Lacs” is French for “Thousand Lakes,” making it Thousand Lakes Lake.) As the above images show, on 27 January 2017 Lake Mille Lacs was not visible in the GOES image. On 2 February 2017, it was. They both look like clear days, so what happened? Why did Lake Mille Lacs disappear?

As I said before, the lake didn’t dry up. It simply became temporarily invisible. But, this requires a discussion about what it means to be “visible”. Lake Mille Lacs shows up in the image from 2 February 2017 because it appears brighter than the surrounding land. That’s because the lake is covered with snow. Aren’t the surrounding land areas also covered with snow? Yes. However, the surrounding lands also have trees which obscure the snow and shade the background surface, which is why forested areas appear darker even when there is snow.

That leads to this question: why does the lake appear darker on 27 January? Because it rained the week before. Want proof? Look at the almanac for Brainerd (NW of Lake Mille Lacs) for the period of 18-22 January 2017. Every day made it above freezing along with several days of rain. Much of the snow melted (including the snow on the lake). Want more proof? Here’s a video taken on the lake from 20 January 2017. See how Minnesotans drive around on frozen lakes – even in the rain? And, see how wet and slushy the surface of the ice is? This makes it appear darker than when there is fresh snow on top. If you’ve ever seen a pile of slush, you know it’s not bright white, but a dull gray color. The less reflective slush on the lake reduced the apparent brightness down to the level of the surrounding woodlands. That’s why the lake appeared to disappear.

Now, this is “current GOES” imagery. We can do better with VIIRS, since we have more channels to play with. And, as we all know, GOES-R successfully launched back in November 2016 and is now in orbit as GOES-16. This satellite has the first Advanced Baseline Imager (ABI) in space. The ABI has many of the same channels as VIIRS, so the following discussion applies to both instruments. “New” GOES will have up to 500 m resolution in the visible, which is much closer to VIIRS (375 m) than “current” GOES (1 km). That’s another thing to think about when we talk about what is visible and what isn’t.

Here are the VIIRS high-resolution visible (I-1) images that correspond to the GOES images above:

VIIRS high-resolution visible (I-1) image, taken 19:35 UTC 27 January 2017

VIIRS high-resolution visible (I-1) image, taken 19:35 UTC 27 January 2017

VIIRS high-resolution visible (I-1) image, taken 19:22 UTC 2 February 2017

VIIRS high-resolution visible (I-1) image, taken 19:22 UTC 2 February 2017

Although, we should probably focus on Minnesota. Here are the cropped images side-by-side:

Comparison between VIIRS high-resolution visible (I-1) images

Comparison between VIIRS high-resolution visible (I-1) images

Remember: you can click on any image to bring up the full resolution version.

Although Lake Mille Lacs is just barely visible in the image from 27 January, it’s much easier to see on 2 February. So, we get the same story from VIIRS that we got with GOES, which is good. That means we don’t have a major fault of a multi-million dollar satellite. It’s a “fault” of the radiative properties of slush, combined with the low resolution of the GOES images above.

Keep your eyes also on the largest inland lake in Minnesota: Red Lake. The Siamese twins of Upper and Lower Red Lake didn’t get as much rain as Lake Mille Lacs and its snow never fully melted, so its appearance doesn’t change much between the two images.

The GOES Imager also has a longwave infrared (IR) channel, and a mid-wave IR channel similar to VIIRS. Since the goal of this is not to compare GOES to VIIRS, but to show how these lakes appear at different wavelengths, we’ll stick to the VIIRS images. Here are the high-resolution VIIRS longwave IR images from the same times:

Comparison of VIIRS high-resolution longwave IR (I-5) images

Comparison of VIIRS high-resolution longwave IR (I-5) images

In both images, the lakes are nearly invisible! This is because the longwave IR is primarily sensitive to temperature changes, and the slush is nearly the same temperature as the background land surface. With no temperature contrast to key on, the lake looks just like the surrounding land. Although, if you zoom in and squint, you might say that Lake Mille Lacs is actually more visible in the image from 27 January. 27 January was a warmer day (click back on that Brainerd almanac), and the surrounding land warmed up more than the slushy ice on the lake. 2 February was much colder on the lake and the land. But, let this be a lesson that, just because the lake doesn’t show up, it doesn’t mean the lake doesn’t exist!

Something interesting happens when you look at the mid-wave IR. All the lakes are visible, and take on a similar brightness, no matter how slushy they are:

Comparison of VIIRS high-resolution mid-wave IR (I-4) images

Comparison of VIIRS high-resolution mid-wave IR (I-4) images

In this wavelength range, both reflection of solar energy and thermal emission are important. Snow, ice and slush are not reflective and they are cold, making the lakes appear darker than the surrounding land. The fact that the land surrounding Lake Mille Lacs and Red Lake is darker on 2 February than it is on 27 January is further proof that it was a colder day with more snow on the ground.

Here’s where we get to the advantage of VIIRS (and, soon, GOES-16): it has more channels in the shortwave and near-IR. The 1.6 µm “snow and ice” band has a lot of uses, and I expect it will be a popular channel on the ABI. Here’s what the high-resolution channel looks like from VIIRS:

Comparison of VIIRS high-resolution near-IR (I-3) images

Comparison of VIIRS high-resolution near-IR (I-3) images

Compare these with the visible images above. Now, the reverse is true: Lake Mille Lacs is easier to see in the first image than the second! You can’t call it invisible at all on 27 January! The presence of liquid water makes the slush very absorbing – more than even ice and snow – so it appears nearly black. In fact, it’s hard to tell the difference between the slushy ice-covered Lake Mille Lacs, and the open waters of Lake Superior, which has no ice or slush on it. On 2 February, we see the fresh layer of snow on Lake Mille Lacs has increased the lake’s reflectivity, but it’s still slightly darker than the surrounding snow covered land. This is for two reasons: snow and ice are absorbing at 1.6 µm and the surrounding woodlands are more reflective.

Here’s a better comparison between the “visible” and the “snow and ice” bands:

Comparison of VIIRS I-1 and I-3 images (animation)

Comparison of VIIRS I-1 and I-3 images (animation)

You’ll have to click on the image to see it animate between the two.

Here’s an animation showing all five high-resolution bands on VIIRS for the two days:

Comparison of VIIRS high-resolution imagery channels (animation)

Comparison of VIIRS high-resolution imagery channels (animation)

Again, you have to click on it to see it animate.

Now, we can combine channels into RGB composites that highlight the snow and ice. We’ve discussed several RGB composites for snow detection before. And, we have been looking at the Natural Color RGB for a long time. This composite combines the high-resolution bands I-1 (0.64 µm), I-2 (0.86 µm) and I-3 (1.6 µm) as the blue, green and red components of the image, respectively. Here’s what it looks like for these two days:

Comparison of VIIRS Natural Color RGB composites

Comparison of VIIRS Natural Color RGB composites using high-resolution imagery bands

Lake Mille Lacs is visible on both days – first because it’s darker than the surroundings, then because it’s brighter. This composite demonstrates how vegetation can obscure the surface snow – it appears more brown in deciduous forests (and bare fields with no snow) and green in coniferous areas. But, the important point is that the wetter the snow and slush, the darker it appears. The fresher the snow, the brighter cyan color it has.

This is exaggerated in the “Snow RGB” that combines moderate resolution bands M-11 (2.25 µm), M-10 (1.6 µm) and M-7 (0.86 µm):

Comparison of VIIRS "Snow RGB" composites of channels M-11, M-10 and M-7

Comparison of VIIRS “Snow RGB” composites of channels M-11, M-10 and M-7

M-11 (2.25 µm) is sold as a “cloud particle size” band, but it also helps with snow and ice detection (and fires). The presence of water in melting snow enhances the darkening at 2.25 µm. In this RGB, that means melting snow appears more red, while fresh snow appears more pink. The slush on Lake Mille Lacs appears very dark – almost as dark as Lake Superior – so a Minnesotan might be forgiven if they see the image from 27 January and decide not to drive out on the lake to go ice fishing because they think the ice isn’t there.

Of course, VIIRS also gives us the True Color RGB – the most intuitive RGB composite – that combines the blue-, green- and red-wavelength visible bands: M-3 (0.48 µm), M-4 (0.55 µm) and M-5 (0.67 µm). If you’re curious, here’s what that looks like:

Comparison of VIIRS True Color RGB composite images

Comparison of VIIRS True Color RGB composite images

The slush on Lake Mille Lacs looks just like dirty slush and the fresh snow looks just like snow. (As it should!)

So, the second biggest lake in Minnesota never disappeared – it just changed its surface properties. And, it will always be “visible” to VIIRS in one channel or another – unless it’s cloudy (or it completely dries up).

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , , , , , , | Comments Off on On the Disappearance of Lake Mille Lacs

December Fluff

By now, you probably know the drill: a little bit of discussion about a particular subject, throw in a few pop culture references, maybe a video or two, then get to the good stuff – high quality VIIRS imagery. Then, maybe add some follow-up discussion to emphasize how VIIRS can be used to detect, monitor, or improve our understanding of the subject in question. Not today.

You see, VIIRS is constantly taking high quality images of the Earth (except during orbital maneuvers or rare glitches). There isn’t enough time in a day to show them all, or go into a detailed discussion as to their relevance. And, nobody likes to read that much anyway. So, as we busily prepare for the upcoming holidays, we’re going to skip the in-depth discussion and get right to the good stuff.

Here then is a sample of interesting images taken by VIIRS over the years that weren’t featured on their own dedicated blog posts. Keep in mind that they represent the variety of topics that VIIRS can shed some light on. Many of these images represent topics that have already been discussed in great detail in previous posts on this blog. Others haven’t. It is important to keep in mind… See, I’m starting to write too much, which I said I wasn’t going to do. I’ll shut up now.

Without further ado, here’s a VIIRS Natural Color image showing a lake-effect snow event that produced a significant amount of the fluffy, white stuff back in November 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

As always, click on the image to bring up the full resolution version. Did you notice all the cloud streets? How about the fact that the most vigorous cloud streets have a cyan color, indicating that they are topped with ice crystals? The whitish clouds are topped with liquid water and… Oops. I’m starting to discuss things in too much detail, which I wasn’t going to do today. Let’s move on.

Here’s another Natural Color RGB image using the high-resolution imagery bands showing a variety of cloud streets and wave clouds over the North Island of New Zealand:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

Here’s a Natural Color RGB image showing a total solar eclipse over Scandinavia in 2015:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

Here’s a VIIRS True Color image and split-window difference (M-15 – M-16) image showing volcanic ash from the eruption of the volcano Sangeang Api in Indonesia in May 2014:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 - M-16) image (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 – M-16) image (06:20 UTC 31 May 2014)

Here’s a VIIRS True Color image showing algae and blowing dust over the northern end of the Caspian Sea (plus an almost-bone-dry Aral Sea):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

Here is a high-resolution infrared (I-5) image showing a very strong temperature gradient in the Pacific Ocean, off the coast of Hokkaido (Japan):

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

The green-to-red transition just southeast of Hokkaido represents a sea surface temperature change of about 10 K (18 °F) over a distance of 3-5 pixels (1-2 km). This is in a location that the high-resolution Natural Color RGB shows to be ice- and cloud-free:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

Here’s a high-resolution infrared (I-5) image showing hurricanes Madeline and Lester headed toward Hawaii from earlier this year:

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

Here are the Fire Temperature RGB (daytime) and Day/Night Band (nighttime) images of a massive collection of wildfires over central Siberia in September 2016:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

Here is a 5-orbit composite of VIIRS Day/Night Band images showing the aurora borealis over Canada (August 2016):

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Here is a view of central Europe at night from the Day/Night Band:

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

And, finally, for no reason at all, here’s is a picture of Spain wearing a Santa hat (or sleeping cap) made out of clouds:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

There you have it. A baker’s ten examples showing a small sample of what VIIRS can do. No doubt it will be taking more interesting images over the next two weeks, since it doesn’t stop working over the holidays – even if you and I do.

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on December Fluff

Single-Purpose Flour

Think of a snowflake. What happens when that snowflake hits the ground? Now, picture other snowflakes – millions of them – all hitting the ground and piling up on top of each other, crushing our first poor snowflake. Skiers love to talk (and dream) about “fresh powder.” But, what happens when the “powder” isn’t so fresh?

Those delicate, little snow crystals we imagine (or look at directly, if we click on links included in the text) undergo a transformation as soon as they hit the ground. Compression from the weight of the snow above, plus the occasional partial thaw and re-freeze cycle (when temperatures are in the right range), breaks up the snow flakes and converts the 6-pointed crystals into more circular grains of snow. As more and more snow accumulates on top, the air in between the individual snowflakes/grains (which is what helps make it a good insulator) gets squeezed out, making the snow more dense. If enough time passes and enough snow accumulates, individual snow grains can fuse together. These bonded snow grains are called “névé.” If this extra-dense snow can survive a whole summer without melting, then a second winter of this compaction and compression will squeeze out more air and fuse more snow grains, creating the more dense “firn.” After 20 or 30 years of this, what once was a collection of fragile snowflakes becomes a nearly solid mass of ice that we call a “glacier.” Glaciers can be made up of grains that are several inches in length.

But, you don’t need to hear me say it (or read me write it), you can watch a short video where a guy in a thick Scottish accent explains it. (Did you notice his first sentence was a lie? Snow is made of frozen water, so glaciers are made of frozen water, since they are made of snow. I think what he means is that glaciers aren’t formed the same way as a hockey rink, but the way he said it is technically incorrect.) At the end of the video, the narrator hints at why we are looking at glaciers today: glaciers have the power to grind down solid rock.

When a glacier forms on a non-level surface, gravity acts on it, pulling it down the slope. This mass of ice and friction from the motion acts like sandpaper on the underlying rock, converting the rock into a fine powder known as “glacial flour” or, simply, “rock flour.” In the spring and summer months, the meltwater from the glacier collects this glacial flour and transports it downstream, where it may be deposited on the river’s banks. During dry periods, it doesn’t take much wind to loft these fine particles of rock into the air, creating a unique type of dust storm that is not uncommon in Alaska. One that can be seen by satellites.

And, wouldn’t you know it, a significant event occurred at the end of October. Take a look at this VIIRS True Color image from 23 October 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:24 UTC 23 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:24 UTC 23 October 2016)

See the big plume of dust over the Gulf of Alaska? Here’s a zoomed in version:

Zoomed in version of above image.

Zoomed in version of above image.

That plume of dust is coming from the Copper River delta. The Copper River is fed by a number of glaciers in Wrangell-St. Elias National Park, plus a few in the Chugach Mountains so it is full of glacial sediment and rock flour (as evidenced by this photo). And, it’s amazingly full of salmon. (How do they see where they’re going when they head back to spawn? And, that water can’t be easy for them to breathe.)

Notice also that we have the perfect set-up for a glacial flour dust event on the Copper River. You can see a low-pressure circulation over the Gulf of Alaska in the above picture, plus we have a cold, Arctic high over the Interior shown in this analysis from the Weather Prediction Center. For those of you familiar with Alaska, note that temperatures were some 30 °F warmer during the last week in October in Cordova (on the coast) than they were in Glennallen (along the river ~150 miles inland). That cold, dense, high-pressure air over the interior of Alaska is going to seek out the warmer, less dense, low-pressure air over the ocean – on the other side of the mountains – and the easiest route to take is the Copper River valley. The air being funneled into that single valley creates high winds, which loft the glacial flour from the river banks into the atmosphere.

Now, depending on your preferences, you might think that the dust shows up better in the Natural Color RGB composite:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:24 UTC 23 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:24 UTC 23 October 2016).

But, everyone should agree that the dust is even easier to see the following day:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:01 UTC 24 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:01 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:01 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:01 UTC 24 October 2016)

You can also see a few more plumes start to show up to the southeast, closer to Yakutat.

Since Alaska is far enough north, we get more than one daytime overpass every day. Here’s the same scene on the very next orbit, about a 100 minutes later:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:42 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:42 UTC 24 October 2016)

Notice that the dust plume appears darker. What is going on? This is a consequence of the fact that glacial flour, like many aerosol particles, has a tendency to preferentially scatter sunlight in the “forward” direction. At the time of the first orbit (21:01 UTC), both the sun and the dust plume are on the left side of the satellite. The sunlight scatters off the dust in the same (2-dimensional) direction it was traveling and hits the VIIRS detectors. In the second orbit (22:42 UTC), the dust plume is now to the right of the satellite, but the sun is to the left. In this case, forward scattering takes the sunlight off to the east, away from the VIIRS detectors. With less backward scattering, the plume appears darker. This has a bigger impact on the Natural Color imagery, because the Natural Color RGB uses longer wavelength channels where forward scattering is more prevalent. Here’s the True Color image from the second orbit:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (22:42 UTC 24 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (22:42 UTC 24 October 2016)

The plume is a little darker than the first orbit, but not by as much as in the Natural Color imagery. Here are animations to show that:

Animation of VIIRS True Color images (24 October 2016)

Animation of VIIRS True Color images (24 October 2016)

Animation of VIIRS Natural Color images (24 October 2016)

Animation of VIIRS Natural Color images (24 October 2016)

There are many other interesting details you can see in these animations. For one, you can see turbid waters along the coast in the True Color images that move with the tides and currents. These features are absent in the Natural Color because the ocean is not as reflective at these longer wavelengths. You can also see the shadows cast by the mountains that move with the sun. Some of the mountains seem to change their appearance because VIIRS is viewing them from a different side.

The dust plumes were even more impressive on 25 October 2016, making this a three-day event. The same discussion applies:

VIIRS True Color composite of channels M-3, M-4 and M-5 (20:43 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (20:43 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (22:26 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (22:26 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (20:43 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (20:43 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:26 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:26 UTC 25 October 2016)

Full disclosure, yours truly drove through a glacial flour dust storm along the Delta River on the north side of the Alaska Range back in 2015. Even though it was only about a mile wide, visibility was reduced to only a few hundred yards beyond the hood of my car. It felt as dangerous as driving through any fog. The dust event shown here was not a hazard to drivers, since it was out over the ocean, but it was a hazard to fisherman. Being in a boat near one of these river deltas means dealing with high winds and high waves. To forecasters, these dust plumes provide information about the wind on clear days (when cloud-track wind algorithms are no help), which is useful in a state with very few surface observing sites to take advantage of.

The last remaining issue for the day is one of terminology. You see, “glacial flour dust storm” is a mouthful, and acronyms aren’t always the best solution. (GFDS, anyone?) “Haboob” covers desert dust. “SAL” or “bruma seca” covers Saharan dust specifically. So, what should we call these dust events? Something along the lines of “rock flour”, only more proactive! And, Dusty McDustface is right out!

Posted in Uncategorized | Tagged , , , , , , , , , , , , | 2 Comments

Watch for Falling Rock

Q: When a tree falls in the forest and nobody is around to hear it, does it make a sound?

A: Yes.

That’s an easy question to answer. It’s not a 3000-year-old philosophical conundrum with no answer. Sound is simply a pressure wave moving through some medium (e.g. air, or the ground). A tree falling in the forest will create a pressure wave whether or not there is someone there to listen to it. It pushes against the air, for one. And it smacks into the ground (or other trees), for two. These will happen no matter who is around. As long as that tree doesn’t fall over in the vacuum of space (where there is nothing to transmit the sound waves and nothing to crash into), that tree will make “a sound”. (There are also sounds that humans cannot hear. Think of a dog whistle. Does that sound not exist because a human can’t hear it?)

What if it’s not a tree? What if it’s 120 million metric tons of rock falling onto a glacier? Does that make a sound? To quote a former governor, “You betcha!” It even causes a 2.9 magnitude earthquake!

That’s right! On 28 June 2016, a massive landslide occurred in southeast Alaska. It was picked up on seismometers all over Alaska. And, a pilot who regularly flies over Glacier Bay National Park saw the aftermath:

If you didn’t read the articles from the previous links, here’s one with more (and updated) information. And, according to this last article, rocks were still falling and still making sounds (“like fast flowing streams but ‘crunchier'”) four days later. That pile of fallen rocks is roughly 6.5 miles long and 1 mile wide. And, some of the rock was pushed at least 300 ft (~100 m) uphill on some of the neighboring mountain slopes.

Of course, who needs pilots with video cameras? All we need is a satellite instrument known as VIIRS to see it. (That, and a couple of cloud-free days.) First, lets take a look at an ultra-high-resolution Landsat image (that I stole from the National Park Service website and annotated):

Glacier Bay National Park as viewed by Landsat (courtesy US National Park Service)

Glacier Bay National Park as viewed by Landsat (courtesy US National Park Service)

Of course, you’ll want to click on that image to see it at full resolution. The names I’ve added to the image are the names of the major (and a few minor) glaciers in the park. The one to take note of is Lamplugh. Study it’s location, then see if you can find it in this VIIRS True Color image from 9 June 2016:

VIIRS True Color RGB composite image of channels M-3, M-4 and M-5 (20:31 UTC 9 June 2016), zoomed in at 200%.

VIIRS True Color RGB composite image of channels M-3, M-4 and M-5 (20:31 UTC 9 June 2016), zoomed in at 200%.

Anything? No? Well, how about in this image from 7 July 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:42 UTC 7 July 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:42 UTC 7 July 2016), zoomed in at 200%

I see it! If you don’t, try this “Before/After” image overlay, by dragging your mouse from side to side:

[beforeafter]beforeafter[/beforeafter]

That dark gray area in the image from 7 July 2016 that the arrow is pointing to is the Lamplugh Glacier landslide! If the “Before/After” overlay doesn’t work, try refreshing the page, or look at this animated GIF:

Animation of VIIRS True Color images highlighting the Lamplugh Glacier landslide

Animation of VIIRS True Color images highlighting the Lamplugh Glacier landslide

Of course, with True Color images, it can be hard to tell what is cloud and what is snow (or glacier) and with VIIRS you’re limited to 750 m resolution. We can take care of those issues with the high-resolution (375 m) Natural Color images:

Animation of VIIRS Natural Color images of the Lamplugh Glacier landslide

Animation of VIIRS Natural Color images of the Lamplugh Glacier landslide

Make sure you click on it to see the full resolution. If you want to really zoom in, here is the high-resolution visible channel (I-1) imagery of the event:

Animation of VIIRS high-resolution visible images of the Lamplugh Glacier landslide

Animation of VIIRS high-resolution visible images of the Lamplugh Glacier landslide

You don’t even need an arrow to point it out. Plus, if you look closely, I think you can even see some of the dust coming from the slide.

That’s what 120 million metric tons of rock falling off the side of a mountain looks like, according to VIIRS!

Posted in Uncategorized | Tagged , , , , , , , , , , , , | Comments Off on Watch for Falling Rock

Remote Islands V: St. Helena and Ascension

You may have missed it in the news, but history was made last week:

A plane landed! Wow!

But, that’s not any old plane – that’s the first commercial airliner to land on St. Helena Island, which just completed the construction of their very first airport. That means there may be no more commercial sailing to this tiny island.

People prone to seasickness may be cheering the news. People afraid of flying might not. Did you notice it took three attempts to land that plane in the video above? The first pass was getting everything all lined up with no intention of landing. The landing gear wasn’t even down. The second – which looked like a roller coaster – was waived off due to the heavy crosswinds. The third time was the charm. However, it was such a shaky first landing, they’ve postponed the official opening of the airport.

So, where is St. Helena (pronounced Ha-LEEN-a), anyway? And why should I care?

Well, to answer the first question, it’s somewhere in this image:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:45 UTC 26 April 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:45 UTC 26 April 2016).

Did you find it? To help you with your bearings, Africa is just outside this VIIRS swath on the right side of the image. Two hints: click on the image to bring up the full resolution version. St. Helena is just northwest of the center of the image. It’s the only island in the image not covered by clouds. Fun fact: every island within this VIIRS swath is part of the British Overseas Territory of St. Helena, Ascension and Tristan da Cunha. We already looked more closely at Tristan da Cunha, so let’s take a look at the other two.

We can get a higher resolution look if we use the I-band Natural Color RGB composite:

VIIRS Natural Color RGB composite of channels I-01, I-02 and I-03 (12:45 UTC 26 April 2016)

VIIRS Natural Color RGB composite of channels I-01, I-02 and I-03 (12:45 UTC 26 April 2016).

Notice the island appears green in the center, surrounded by a ring of brown – just the way it looks on a really high resolution satellite image. VIIRS has the resolution to pick this out!

As for why you should care, I don’t know if I can answer that. If your first thought is to ask that question, you probably don’t care. But, there are a few interesting things to note about St. Helena (besides its new airport):

– It was once an important stopping point for ships sailing from Europe to India in search of spices. At least, until the Suez Canal opened.

– It later became a prison, housing those who fought against the British government and lost, including Napoleon Bonaparte, Dinuzulu, King of the Zulu Nation, and POWs from the Boer War.

– Along with Ascension Island, St. Helena helped inspire the modern environmental movement. And it was here that the first large scale experiments in weather modification took place. (Not counting rain dances, of course.)

After witnessing the effect of deforestation on the island in the late-1700s and early-1800s, it was believed that re-foresting would help keep moisture on the island, which would lead to more clouds and more rainfall. Ascension Island, which was essentially a barren wasteland when first discovered, was also planted with trees, creating it’s Green Mountain, which is clearly visible on very high resolution satellites.

Speaking of Ascension Island – where is that located? In the first image above, showing most of the Southern Atlantic, Ascension is near the upper left corner. It’s hard to see because it is covered by clouds. Just follow the 8 °S latitude line in from the left edge of the image.

Here it is at high resolution during a clear day:

VIIRS Natural Color RGB composite of channels I-01, I-02, and I-03 (14:03 UTC 20 April 2016)

VIIRS Natural Color RGB composite of channels I-01, I-02, and I-03 (14:03 UTC 20 April 2016).

If you look closely, you’ll see that there is a small cloud or two right over Green Mountain, so maybe the efforts of the early environmentalists paid off!

For completeness, Tristan da Cunha is in the lower left of the True Color image I posted at the top. While it is covered by clouds, you can tell it’s there because it is creating its own waves. Here it is on the next orbit, where it is closer to satellite nadir:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (15:24 UTC 26 April 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (15:24 UTC 26 April 2016).

If I’ve inspired you to visit these islands, ask the government to give me a commission. But, seriously, don’t forget to say “Hi!” to Jonathan. Or see the many other plants and animals that are found nowhere else on Earth.

UPDATE (16 October 2017): Reuters has reported that the airport is now officially open to commercial flights (only a year and half after I wrote the original blog post)!

Posted in Uncategorized | Tagged , , , , , , , , | Comments Off on Remote Islands V: St. Helena and Ascension

The Sirocco and the Giant Bowl of Dust

As mentioned before on this blog, there are typhoons, hurricanes, and cyclones, and they’re all basically the same thing. They’re just given a different name depending on where they occur in the world. Similarly, there are many different names for winds (not counting the classification of wind speeds developed by a guy named Beaufort). There’s the Chinook, the Santa Ana, the bora, the föhn (or foehn), the mistral, the zonda, the zephyr and the brickfielder. (A more complete list is here.) Some of these winds are different names for the same phenomenon occurring in different parts of the world, like the föhn, the chinook, the zonda and the Santa Ana. Others are definitely different phenomena, with different characteristics (compare the mistral with the brickfielder), but they all have the same basic cause: the atmosphere is constantly trying to equalize its pressure.

The Mediterranean is home to wide variety of named winds, one of which is the sirocco (or scirocco). (Europe is home to wide variety of languages, so this wind is also known as “ghibli,” “jugo” [pronounced “you-go”], “la calima” and “xlokk” [your guess is as good as mine].) Sirocco is the name given to the strong, southerly or southeasterly wind originating over northern Africa that typically brings hot, dry air and, if it’s strong enough, Saharan dust to Europe. Of course, after picking up moisture from the Mediterranean, the wind becomes humid, making life unpleasant for people along the north shore. Hot, humid and full of dust. Perhaps it’s no surprise that the sirocco is believed to be a cause of insomnia and headaches.

Now, I don’t know how hot it was, but an intense low pressure system passed through the Mediterranean around Leap Day and, out ahead of it, strong, southerly winds carried quite a bit of dust from northern Africa into Italy.  Here’s what it looked like in Algeria. And here’s what it looked like in Salento. See if you can see that dust in these True Color VIIRS images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:09 UTC 28 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:09 UTC 28 February 2016).

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (11:48 UTC 29 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (11:48 UTC 29 February 2016)

No problem, right? With True Color imagery, the dust is usually easy to identify and distinguish from clouds and the ocean because it looks like dust. It’s the same color as the sky over Salento, Italy in that video I linked to. The top image shows multiple source regions of dust (mostly Libya, with a little coming from Tunisia) being blown out over the sea. The second image shows one concentrated plume being pulled into the clouds over the Adriatic Sea, headed for Albania and Greece.

By the way, this storm system brought up to 2 meters (6.5 feet) of snow to northern Italy, and even brought measurable snow to Algeria! Africa and Europe made a trade: you take some of my dust, and I’ll take some of your snow.

But, this wasn’t the worst dust event to hit Europe recently. Here’s what the VIIRS True Color showed over Spain and Portugal on 21 February 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:40 UTC 21 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:40 UTC 21 February 2016).

And VIIRS wasn’t the only one to see this dust. Here’s a picture taken by Tim Peake, an astronaut on the International Space Station. Again, it’s easy to pick out the dust because it almost completely obscures the view of the background surface. But, what if the background surface is dust colored?

We switch now to the other side of the world and the Takla Makan desert in China, where the dust has been blowing for the better part of a week:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:11 UTC 4 March 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:11 UTC 4 March 2016).

Can you tell what is dust and what is the desert floor? Can you see the Indian Super Smog on the south side of the Himalayas? Here is the same scene on a clear (no dust) day:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:49 UTC 2 March 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:49 UTC 2 March 2016).

There is a subtle difference there, but you need good eyesight to see it. It might be easier to see if you loop the images:

Animation of VIIRS True Color images (1-7 March 2016)

Animation of VIIRS True Color images of the Takla Makan desert (1-7 March 2016).

You’ll have to click on the image to see it animate.

Did you notice the dark brown areas surrounding the Takla Makan? Those are areas that have green vegetation during the summer. Notice how they become completely obscured by the dust as the animation progresses. That’s one one way to tell that there’s dust there. But, as we have seen before, there are other ways to see the dust.

There’s EUMETSAT’s Dust RGB composite applied to VIIRS:

Animation of VIIRS EUMETSAT Dust RGB images (1-7 March 2016)

Animation of VIIRS EUMETSAT Dust RGB images of the Takla Makan desert (1-7 March 2016).

That’s another animation, by the way, so you’ll have to click on it to see it animate. The same is true for the Dynamic Enhanced Background Reduction Algorithm (DEBRA), which we also talked about before:

Animation of VIIRS DEBRA Dust Product images (1-7 March 2016)

Animation of VIIRS DEBRA Dust Product images of the Takla Makan desert (1-7 March 2016)

But, there’s one more dust detection technique we have not discussed before: the “blue light absorption” technique:

Animation of VIIRS Blue Light Dust images (1-7 March 2016)

Animation of VIIRS Blue Light Dust images of the Takla Makan desert (1-7 March 2016).

The Blue Light Dust detection algorithm keys in on the fact that many different kinds of dust absorb blue wavelengths of light more than the longer visible wavelengths. It uses this information to create an RGB composite where dust appears pastel pink, clouds and snow appear blueish and bare ground appears green. Of course, other features can absorb blue light as well, like the lakes near the northeast corner of the animation that show up as pastel pink. But, depending on your visual preferences and ability to distinguish color, the Blue Light Dust product gives another alternative to the hot pink of the EUMETSAT Dust RGB, the yellow of DEBRA, and the slightly paler tan of the True Color RGB.

One question you might ask is, “How come DEBRA shows a more vivid signal than the other methods?” In the True Color RGB, dust is slightly more pale than the background sand, because it’s made up of (generally) smaller sand particles (which are more easily lofted by the wind) that scatter light more effectively, making it appear lighter in color. In the EUMETSAT Dust RGB, dust appears hot pink because the “split window difference” (12 µm – 10.7 µm) is positive, while the difference in brightness temperatures between 10.7 µm and 8.5 µm is near zero and the background land surface is warm. In DEBRA, the intensity of the yellow is related to the confidence that dust is present in the scene based on a series of spectral tests. DEBRA is confident of the presence of dust even when the signals may be difficult to pick out in the other products, either because it’s a superior product, or because its confidence is misguided. (Hopefully, it’s the former and not the latter.)

By the way, the Takla Makan got its name from the native Uyghurs that live there. Takla Makan means “you can get in, but you can’t get out.” It has also been called the “Sea of Death.” I prefer to call it “China’s Big Bowl of Dust.” It’s a large area of sand dunes (bigger than New Mexico, but smaller than Montana) surrounded on most of its circumference by mountains between 5000 and 7000 m (~15,000-21,000+ feet!). The average annual rainfall is less than 1.5 inches (38 mm). That means when the wind blows it easily picks up the dusty surface, but that dust can’t go anywhere because it’s blocked by mountains (unless it blows to the northeast). The dust is trapped in its bowl.

The Takla Makan is also important historically, because travelers on the original Silk Road had to get around it. Notice on this map, there were two routes: one that skirted the northern edge of the Takla Makan and one that went around the southern edge. This part of Asia was the original meeting point between East and West.

CIRA produces all four imagery products over the Takla Makan desert in near-real time, which you can find here. And, in case you’re curious, you can check out how well DEBRA and the EUMETSAT Dust products compare for the dust-laden siroccos over southern Europe and northern Africa by clicking here and here (for the first event over Spain and Portugal) or here and here (for the second one over Italy and the Adriatic Sea).

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , | 1 Comment

UHF/VHF

Take a second to think about what would happen if Florida was hit by four hurricanes in one month.

Would the news media get talking heads from both sides to argue whether or not global warming is real by yelling at each other until they have to cut to a commercial? Would Jim Cantore lose his mind and say “I don’t need to keep standing out here in this stuff- I quit!”? Would we all lose our minds? Would our economy collapse? (1: yes. 2: every man has his breaking point. 3: maybe not “all”. 4: everybody panic! AHHH!)

It doesn’t have to just be Florida. It could be four tropical cyclones making landfall anywhere in the CONUS (and, maybe, Hawaii) in a 1-month period. The impact would be massive. But, what about Alaska?

Of course, Alaska doesn’t get “tropical cyclones” – it’s too far from the tropics. But, Alaska does get monster storms that are just as strong that may be the remnants of tropical cyclones that undergo “extratropical transition“. Or, they may be mid-latitude cyclones or “Polar lows” that undergo rapid cyclogenesis. When they are as strong as a hurricane, forecasters call them “hurricance force” (HF) lows. And guess what? Alaska has been hit by four HF lows in a 1-month period (12 December 2015 – 6 January 2016).

With very-many HF lows, some of which were ultra-strong, we might call them VHF or UHF lows. (Although, we must be careful not to confuse them with the old VHF and UHF TV channels, or the Weird Al movie.) In that case, let’s just refer to them as HF, shall we?

The first of these HF storms was a doozy – tying the record for lowest pressure ever in the North Pacific along with the remnants of Typhoon Nuri. Peak winds with system reached 122 mph (106 kt; 196 k hr-1; 54 m s-1) in Adak, which is equivalent to a Category 2 hurricane!

Since Alaska is far enough north, polar orbiting satellites like Suomi-NPP provide more than 2 overpasses per day. Here’s an animation from the VIIRS Day/Night Band, one of the instruments on Suomi-NPP:

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015).

It’s almost like a geostationary satellite! (Not quite, as I’ll show later.) This is the view you get with just 4 images per day. (The further north you go, the more passes you get. The Interior of Alaska gets 6-8 passes, while the North Pole itself gets all 15.) Seeing the system wrap up into a symmetric circulation would be a thing of beauty, if it weren’t so destructive. Keep in mind that places like Adak are remote enough as it is. When a storm like this comes along, they are completely isolated from the rest of Alaska!

Here’s the same animation for the high-resolution longwave infrared (IR) band (I-5, 11.5 µm):

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015).

I’ve mentioned Himawari before on this blog. Well, Himawari’s field of view includes the Aleutian Islands. Would you like to see how this storm evolved with 10 minute temporal resolution? Of course you would.

Here is CIRA’s Himawari Geocolor product for this storm:

Here is a loop of the full disk RGB Airmass product applied to Himawari. Look for the storm moving northeast from Japan and then rapidly wrapping up near the edge of the Earth. This is an example of something you can’t do with VIIRS, because VIIRS does not have any detectors sensitive to the 6-7 µm water vapor absorption band, which is one of the components of the RGB Airmass product. The RGB Airmass and Geocolor products are very popular with forecasters, but they’re too complicated to go into here. You can read up on the RGB Airmass product here, or visit my collegue D. Bikos’ blog to find out more about this storm and these products.

You might be asking how we know what the central pressure was in this storm. After all, there aren’t many weather observation sites in this part of the world. The truth is that it was estimated (in the same way the remnants of Typhoon Nuri were estimated) using the methodology outlined in this paper. I’d recommend reading that paper, since it’s how places like the Ocean Prediction Center at the National Weather Service estimate mid-latitude storm intensity when there are no surface observations. I’ll be using their terminology for the rest of this discussion.

Less than 1 week after the first HF storm hit the Aleutians, a second one hit. Unfortunately, this storm underwent rapid intensification in the ~12 hour period where there were no VIIRS passes. Here’s what Storm #2 looked like in the longwave IR according to Himawari. And here’s what it looked like at full maturity according to VIIRS:

VIIRS DNB image (23:17 UTC 18 December 2015)

VIIRS DNB image (23:17 UTC 18 December 2015).

VIIRS I-5 image (23:17 UTC 18 December 2015)

VIIRS I-5 image (23:17 UTC 18 December 2015).

Notice that this storm is much more elongated than the first one. Winds with this one were only in the 60-80 mph range, making it a weak Category 1 HF low.

Storm #3 hit southwest Alaska just before New Year’s, right at the same time the Midwest was flooding. This one brought 90 mph winds, making it a strong Category 1 HF low. This one is bit difficult to identify in the Day/Night Band. I mean, how many different swirls can you see in this image?

VIIRS DNB image (13:00 UTC 30 December 2015)

VIIRS DNB image (13:00 UTC 30 December 2015).

(NOTE: This was the only storm of the 4 to happen when there was moonlight available to the DNB, which is why the clouds appear so bright. The rest of the storms were illuminated by the sun during the short days and by airglow during the long nights.) The one to focus on is the one of the three big swirls closest to the center of the image (just above and right of center). It shows up a little better in the IR:

VIIRS I-5 image (13:00 UTC 30 December 2015)

VIIRS I-5 image (13:00 UTC 30 December 2015).

The colder (brighter/colored) cloud tops are the clue that this is the strongest storm, since all three have similar brightness (reflectivity) in the Day/Night Band. If you look close, you’ll also notice that this storm was peaking in intensity (reaching mature stage) right as it was making landfall along the southwest coast of Alaska.

Storm #4 hit the Aleutians on 6-7 January 2016 (one week later), and was another symmetric/circular circulation. This storm brought winds of 94 mph (2 mph short of Category 2!) The Ocean Prediction Center made this animation of its development as seen by the Himawari RGB Airmass product. Or, if you prefer the Geocolor view, here’s Storm #4 reaching mature stage. But, this is a VIIRS blog. So, what did VIIRS see? The same storm at higher spatial resolution and lower temporal resolution:

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016).

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016).

This storm elongated as it filled in and then retrograded to the west over Siberia. There aren’t many hurricanes that do that after heading northeast!

So, there you have it: 4 HF lows hitting Alaska in less than 1 month, with no reports of fatalities (that I could find) and only some structural damage. Think that would happen in Florida?

Posted in Uncategorized | Tagged , , , , , , | Comments Off on UHF/VHF