Skip to Navigation Skip to content

Regional and Mesoscale Meteorology Branch

Search the RAMMB website

Land of Lincoln Underwater

Posted On: April 23, 2013 - By: Curtis Seaman


The week beginning on 14 April 2013 was a big week for weather across the United States. There were 30 reports of tornadoes. (Make sure you click on each link, and look at the filtered reports.) And, when our home base of Fort Collins, Colorado was in the middle of being buried under two feet of snow, large parts of the Midwest received 4-7 inches of rainfall. This is a lot of rain for an area with saturated ground caused by recent snowmelt. Unsurprisingly, it caused a lot of flooding – including a sinkhole in a Chicago neighborhood.

Now, we know VIIRS is good at detecting snow. But, flooding is a bit trickier, particularly river flooding. First, flooding usually occurs when it’s cloudy. (Not always, of course, since you can have flooding from snowmelt or heavy rains that occurred upstream or caused by ice jams when it isn’t cloudy. And, as we saw with Hurricane Isaac, flooding may linger long after the clouds are gone.) Second, flooding can have a huge impact over a small area that your satellite might not have the resolution to detect.

Well, I’m here to report that VIIRS has the resolution to detect the flooding that occurred over Illinois last week. And the flooding lasted until well after the clouds cleared. Take a look at the image below from 21 April 2013, where the flooding is visible:

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 21 April 2013

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 21 April 2013

This is a “Natural Color” RGB composite of the high-resolution channels I-01 (0.64 µm, blue), I-02 (0.87 µm, green) and I-03 (1.61 µm, red). If you click on the image, then on the “3124×2152” link below the banner, you will see the full resolution image. If you’re wondering where the flooding is, notice the rivers I have labelled in the image. Now try to spot those rivers in this image from two weeks earlier (5 April 2013):

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 5 April 2013.

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 5 April 2013.

Those rivers are a lot more difficult to see. The Illinois, Sangamon, and Mississippi rivers are the only rivers easily visible in the before image. A lot more show up after the heavy rains because they grew beyond their banks and became big enough for VIIRS to see. You might also notice that the vegetation has become much greener over this two week period. To make it easier to compare, here are those images cropped and centered on the swollen rivers, side-by-side:

False-color RGB composites of VIIRS channels I-01, I-02 and I-03, taken on 5 April 2013 and 21 April 2013

False-color RGB composites of VIIRS channels I-01, I-02 and I-03, taken on 5 April 2013 (left) and 21 April 2013 (right)

There are a couple of important things to note about these images that are related to how VIIRS and its satellite (Suomi-NPP) work. One is that Suomi-NPP has an orbit with a 16-day repeat cycle. Every 16 days it should (if it’s in its proper orbit) pass over the same spot on the Earth at the same time of day. The images above were taken 16 days apart, and as you can see in the captions, were taken at the same time of day. The only difference in the area included in the images is the result of the start time of the data granules being 13 seconds off. This means that VIIRS is viewing all the same spots at the same viewing angles.

This leads to point #2: the VIIRS instrument has a constant angular resolution (recall that it uses a constantly rotating mirror to detect radiation across the swath) which, when projected onto the surface of the Earth, means that it does not have a constant spatial resolution. (See slide 12 of this presentation.) The spatial resolution of the high resolution channels shown here is ~375 m at nadir, and it degrades to ~750 m resolution at the edge of the swath. In the images above, the center of the VIIRS swath (nadir) is near the right edge of the data plotted. The left edge of the data plotted is about 80% of the distance from nadir to the edge of the swath. The loss in resolution over this distance may be enough to prevent VIIRS from detecting all the flooding that is occurring. But, the important thing is that we are viewing all these rivers at the same angles and the same resolution. This gives the best comparison between the before and after images.

A few more things to notice in the above images: there is snow in the northern part of Michigan’s Lower Peninsula, with ice on Green Bay and Lake Winnebago (all of which are easier to see in the image from 5 April 2013). Does anyone living there still remember last year’s record heat wave?  Many places in this region had already had a number of +80 and +90 °F days, but it seems like a distant memory now. This year, winter doesn’t want to end.

One last thing for today: If you focus on Michigan again you might notice another area of flooding. This one is large enough it wouldn’t be impacted by any resolution degradation (even though it is near the center of the swath where you wouldn’t be worried about that anyway). I’ve zoomed in on the area here:

False-color composites of VIIRS channels I-01, I-02 and I-03 from 5 April 2013 and 21 April 2013

False-color composites of VIIRS channels I-01, I-02 and I-03 from 5 April 2013 (left) and 21 April 2013 (right)

This is along the Shiawassee River near the Shiawassee National Wildlife Refuge, a few miles southwest of Saginaw. This area of flooding is confirmed by these aerial photographs taken on 22 April 2013.