Skip to Navigation Skip to content

Regional and Mesoscale Meteorology Branch

Search the RAMMB website

Hell Froze Over (and the Great Lakes, too)

Posted On: February 14, 2014 - By: Curtis Seaman


This has been some kind of winter. The media has focused a lot of attention on the super-scary “Polar Vortex” even though it isn’t that scary or that rare. (I wonder if Hollywood will make it the subject of the next big horror movie in time for Halloween.) Many parts of Alaska have been warmer than Georgia, with Lake Clark National Park tying the all-time Alaskan record high temperature for January (62 °F) on 27 January 2014. (Atlanta’s high on that date was only 58 °F.) Sacramento, California broke their all-time January record high temperature, reaching 79 °F three days earlier. In fact, many parts of California had record warmth in January, while everyone on the East Coast was much colder than average. Reading this article made me think of an old joke about statisticians: a statistician is someone who would say: if your feet are stuck in a freezer and your head is stuck in the oven, you are, on average, quite comfortable.

One consequence of the cold air in the eastern United States is that Hell froze over. No, not the Gates of Hell in Turkmenistan. This time I’m talking about Hell, Michigan. Hell is a nice, little town whose residents never get tired of people telling that joke.

It has been so cold in the region around Hell that the Great Lakes are approaching a record for highest percentage of surface area covered by ice. This article mentions some of the benefits of having ice-covered Lakes, including: less lake-effect snow, more sunshine and less evaporation from the Lakes, which would keep lake levels from dropping. Although, that is at the cost of getting ships stuck in the ice, and reducing the temperature-moderating effects of the Lakes, which allows for colder temperatures on their leeward side.

This article (and many other articles I found) uses MODIS “True Color” images to highlight the extent of the ice. Why don’t they show any VIIRS images? Well, I’m here to rectify that.

First off, I can copy all those MODIS images and show the “True Color” RGB composite from VIIRS:

VIIRS "True Color" RGB composite of channels M-3, M-4 and M-5, taken 17:27 UTC 11 February 2014

VIIRS "True Color" RGB composite of channels M-3, M-4 and M-5, taken 17:27 UTC 11 February 2014

While it was a rare, sunny winter day for most of the Great Lakes region on 11 February 2014, it’s hard to tell that from the True Color imagery. I mean, look at this True Color MODIS image shown on NPR’s website. Can you tell what is ice and what is clouds?

There are ways of distinguishing ice from clouds, which I have talked about before but, it doesn’t hurt to look at these methods again and see how well they do here. First, let’s look at my modification of the EUMETSAT “Snow” RGB composite:

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 17:27 UTC 11 February 2014

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 17:27 UTC 11 February 2014

This “Snow” RGB composite differs by using reflectances at 2.25 µm in the place of the 3.9 µm channel that EUMETSAT uses. (Their satellite doesn’t have a 2.25 µm channel.) It’s easy to see where the clouds are now. Of course, now the snow and ice appear hot pink, which you may not find aesthetically pleasing. And it certainly isn’t reminiscent of snow and ice.

If you don’t like the “Snow” RGB, you may like the “Natural Color” RGB composite:

VIIRS "Natural Color" RGB composite of channels I-01, I-02 and I-03, taken 17:27 UTC 11 February 2014

VIIRS "Natural Color" RGB composite of channels I-01, I-02 and I-03, taken 17:27 UTC 11 February 2014

This has the benefit of making snow appear a cool cyan color, and has the added benefit that you can use the high-resolution imagery bands (I-01, I-02 and I-03) to create it. There is twice the resolution in this image than in the Snow and True Color RGB images. Here’s another benefit you may not have noticed right away: the clouds, while still white, appear to be slightly more transparent in the Natural Color RGB. This makes it a bit easier to see the edge of the ice on the east side of Lake Michigan and the center of Lake Huron, for example.

If you’re curious as to how much ice is covering the lakes, here are the numbers put out by the Great Lakes Environmental Research Laboratory (which is about a 25 minute drive from Hell) from an article dated 13 February 2014:

Lake Erie: 96%; Lake Huron: 95%; Lake Michigan: 80%; Lake Ontario: 32% and Lake Superior: 95%. This gives an overall average of 88%, up from 80% the week before. The record is 95% set in 1979, although it should be said satellite measurements of ice on the Great Lakes only date back to 1973.

Why does Lake Ontario have such a low percentage? That last article states, “Lake Ontario has a smaller surface area compared to its depth, so it loses heat more slowly. It’s like putting coffee in a tall, narrow mug instead of a short, wide one. The taller cup keeps the coffee warmer.”  Doesn’t heat escape from the sides of a mug as well as the top? And isn’t Lake Superior deeper than Lake Ontario? Another theory is that “Lake Ontario’s depth and the churning caused by Niagara Falls means that it needs long stretches of exceptionally cold weather to freeze.”  Does Niagara Falls really have that much of an impact on the whole lake?

So, what is the correct explanation? I’m sorry, VIIRS can’t answer that. It can only answer “How Much?” It can’t answer “Why?”

 

BONUS UPDATE (17 February 2014):

It has come to my attention that the very next orbit provided better images of the Great Lakes, since they were no longer right at the edge of the swath. Here, then, are the True Color, Snow and Natural Color RGB composite images from 19:07 UTC, 11 February 2014:

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 19:07 UTC 11 February 2014

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 19:07 UTC 11 February 2014

 

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 19:07 UTC 11 February 2014

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 19:07 UTC 11 February 2014

 

VIIRS "Natural Color" composite of channels I-01, I-02, and I-03, taken 19:07 UTC 11 February 2014

VIIRS "Natural Color" composite of channels I-01, I-02, and I-03, taken 19:07 UTC 11 February 2014

 

UPDATE #2 (18 March 2014): The Great Lakes ice cover peaked at 92.2% on 6 March 2014, just short of the all-time record in the satellite era. March 6th also happened to be a clear day over the Great Lakes, and VIIRS captured these images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 18:35 UTC 6 March 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 18:35 UTC 6 March 2014

 

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 18:35 UTC 6 March 2014

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 18:35 UTC 6 March 2014