Skip to Navigation Skip to content

Regional and Mesoscale Meteorology Branch

Search the RAMMB website

Hurricane Isaac: Before, During and After

Posted On: September 4, 2012 - By: Curtis Seaman


While Hurricane Isaac (then a tropical storm) did not destroy Tampa, Florida as many people feared, it certainly left its mark on the Gulf Coast. With many locations from Florida to Louisiana receiving more than 12″ of rain, and levees unable to keep out the storm surge, flooding was (and still is) a major problem. Look at these aerial photos of Isaac’s aftermath in Louisiana. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP saw that flooding, also.

But first, let’s look at the high resolution infrared (IR) window channel (I-05, 11.45 µm) which, at ~375 m resolution, is the highest-resolution IR window channel on a public weather satellite in space today. This image was taken when Isaac was still a tropical storm in the middle of the Gulf of Mexico:

VIIRS I-05 image of Tropical Storm Isaac, taken 18:50 UTC 27 August 2012

VIIRS I-05 image of Tropical Storm Isaac, taken 18:50 UTC 27 August 2012

This image uses a new (to this blog, anyway) color scale, developed by our colleagues at CIMSS, that really highlights the structure of the clouds at the top of Isaac. The color scale is included in the image. For comparison, here’s the GOES Imager IR window channel (channel 4, 10.7 µm) image from roughly the same time:

GOES-13 Imager channel 4 image of Tropical Storm Isaac, taken 18:45 UTC 27 August 2012

GOES-13 Imager channel 4 image of Tropical Storm Isaac, taken 18:45 UTC 27 August 2012

GOES has ~4 km resolution in its IR channels. VIIRS provides amazing details of the structure of tropical cyclones that you just can’t get with current geostationary satellites.

The real story from Isaac, however, is the flooding. It’s hard to capture flooding from a visible and infrared imaging instrument, since flooding usually occurs when it’s cloudy. Clouds block the view of the surface when looking at visible and infrared wavelengths. But, large quantities of water that fail to evaporate or drain into the local rivers after a period of several days can be seen after the skies clear. That’s what happened with Isaac.

Here are before-Isaac and after-Isaac images of the southern tip of the Florida Peninsula. These are false color (“pseudo-true color”) composites of VIIRS channels I-01, I-02 and I-03. These images were taken on the afternoon overpasses of 23 August and 29 August 2012. Many cities on the east coast of Florida got 10-16 inches of rain (250-400 mm for those of you outside the U.S.). See if you can pick out the flooding.

False color RGB composite of VIIRS channels I-01, I-02 and I-03 taken before and after Tropical Storm Isaac (2012)

False color RGB composite of VIIRS channels I-01, I-02 and I-03 taken before and after Tropical Storm Isaac (2012)

If you have been following this blog, you know that, in the “pseudo-true color” RGB composite, water shows up very dark – in most cases, almost black. That’s not always true, of course. You can see sun glint (particularly in the “before” image) that makes water a lighter color and shallow water (where visible radiation [i.e. channel I-01] is able to penetrate to the bottom) shows up as a vivid blue.

Now, notice the Everglades. Many areas of the Everglades, particularly on the east side, appear darker in the “after” image, because those swampy areas have a lot more water in them. Water has a lower reflectivity than vegetation or bare ground at these wavelengths.

The effect of water on the land surface shows up even better in the moderate resolution channel M-06 (0.75 µm). M-06 is a channel not shown before because it is perhaps the worst channel for producing interesting images. M-06 was designed to aid in ocean color retrievals and/or other uses that require atmospheric correction. The M-06 detectors saturate at a low radiance, so any radiation at 0.75 µm that reflects off of clouds, aerosols or the land surface easily show up. About the only things that have low reflectivity in M-06 are atmospheric gases and water surfaces without sun glint. Ocean color retrievals need a very clean atmosphere with no aerosols or clouds and no sun glint to work correctly. You also need to be able to identify what is or is not water, which is what makes M-06 useful for identifying flooding.

Here are the similar before-Isaac and after-Isaac images of Florida from M-06:

VIIRS channel M-06 images of southern Florida taken before and after Tropical Storm Isaac (2012)

VIIRS channel M-06 images of southern Florida taken before and after Tropical Storm Isaac (2012)

Both the land and optically thick clouds saturate M-06, so this channel is useless at identifying clouds over land (except you can see some cloud shadows). Sun glint is saturating the pixels over the Gulf of Mexico in the “before” image, while it is mostly to the east of Florida in the Atlantic Ocean in the “after” image. In the “after image”, reflective cirrus clouds over the Gulf of Mexico show up that are not as easily visible in the RGB composite. Of primary importance here, however, is the dark appearance of the Everglades in the “after” image. All that flood water reduced the reflectivity of the land surface, making it appear darker. That means, if you know where the clouds (and, hence, the cloud shadows) are, it may be possible to use M-06 to identify large flooded areas.

Louisiana and the coast of Mississippi were the hardest hit by Isaac, and the flooding is easily visible here, too. In fact, the massive flooding is easier to see in the RGB composite in this region. Compare the “before” and “after” images, taken on 26 August 2012 and 1 September 2012:

False color RGB composites of VIIRS channels I-01, I-02 and I-03 of southeast Louisiana

False color RGB composites of VIIRS channels I-01, I-02 and I-03 of southeast Louisiana

To make it easier to see, here’s a quick animation of the before and after images. Watch the highlighted areas.

Animated GIF of false color RGB composites taken from VIIRS before and after Hurricane Isaac

Animated GIF of false color RGB composites taken from VIIRS before and after Hurricane Isaac

After the passage of Hurricane Isaac, Lake Maurepas and Lake Pontchartrain almost appear to merge into one big lake! Other flooding is visible near Slidell, Bay St. Louis, Pascagoula Bay, and the heavily hit parishes of Plaquemines, St. Bernard, Lafourche and Terrebonne.

Thin cirrus clouds are visible in the “after” image, which limit the ability of M-06 to detect some of the flooding, but M-06 is still able to see the large areas of flooding highlighted in the animation above. M-06 also detects reflection off of the Twin Spans as well as the Lake Pontchartrain Causeway. And this is at ~750 m resolution!

VIIRS channel M-06 images of southeastern Louisiana taken before and after Hurricane Isaac (2012)

VIIRS channel M-06 images of southeastern Louisiana taken before and after Hurricane Isaac (2012)

So, don’t try to do ocean color retrievals in pixels obscured by big bridges.