Skip to Navigation Skip to content

Regional and Mesoscale Meteorology Branch

Search the RAMMB website

Copahue, the Stinky Volcano

Posted On: January 4, 2013 - By: Curtis Seaman


On the border between Chile and Argentina sits the volcano Copahue. (If you say it out loud, it is pronounced “CO-pa-hway”.) In the local Mapuche language, copahue means “sulfur water”.  This name was given to the volcano as the most active crater contains a highly acidic lake full of sulfur.  An eruption in 1992 filled the area with “a strong sulfur smell.” Later eruptions have involved “pyroclastic sulfur” (molten hot sulfur ash) and highly acidic mudflows. That doesn’t sound very pleasant.

Right before Christmas, Copahue was at it again. It erupted on 22 December 2012, sending a cloud of sulfur ash into the atmosphere, and MODIS got there first. VIIRS got there 4 hours later and took this image:

VIIRS "true color" RGB composite of channels M-03, M-04 and M-05, taken 18:38 UTC 22 December 2012

VIIRS "true color" RGB composite of channels M-03, M-04 and M-05, taken 18:38 UTC 22 December 2012

This is a “true color” image just like the MODIS one in the link. Make sure you click on the image, then on the “3200×2304” link below the banner to see it in full resolution. Then see if you can spot the volcanic ash cloud from Copahue. I’ll give you a hint: it’s the only cloud that appears brownish-gray.

If you still can’t see it, here’s a zoomed-in image with a yellow arrow to help you out:

VIIRS "true color" RGB composite of the Copahue volcano, taken 18:38 UTC 22 December 2012

VIIRS "true color" RGB composite of the Copahue volcano, taken 18:38 UTC 22 December 2012

Now compare the ash cloud in the VIIRS image with the ash cloud in the MODIS image from 4 hours earlier. (This is easier to do if you can locate in the VIIRS image the lakes marked as “Embalse los Barreales” in the MODIS image.) There’s a lot less ash in the VIIRS image, right?

Not so fast. As the ash dispersed, the plume thinned out, making it harder to see against the brown background surface. But, that doesn’t mean that it’s not there. Here’s the “split window difference” image from VIIRS at the same time:

VIIRS "split window difference" image (M-15 - M-16) taken 18:38 UTC 22 December 2012

VIIRS "split window difference" image (M-15 - M-16) taken 18:38 UTC 22 December 2012

That whole black plume is volcanic ash detected by the split window difference. The yellow arrow points to Copahue and the ash plume that is visible in the true color image. The red arrow points to the ash plume that is not visible in the true color image, yet is detected by this simple channel difference (M-15 minus M-16). A victory for the split window technique!

It was also a victory for the EUMETSAT Dust RGB, which didn’t work for the 100-year-old ash cloud over Alaska. Here’s what that RGB composite looks like when applied to VIIRS:

EUMETSAT's Dust RGB composite applied to VIIRS from 18:38 UTC 22 December 2012

EUMETSAT's Dust RGB composite applied to VIIRS from 18:38 UTC 22 December 2012

It is interesting that the ash plume right over Copahue is tough to detect in this RGB composite because it is red, just like a lot of the other clouds. As the plume thins out away from the volcano, its color changes to a variety of pastels of pink and blue, and even appears to extend out over the Atlantic Ocean. Where clouds and ash coexist near the coast of Argentina, pixels show up orange and yellow and green (click to the high-resolution image to see that).

Why does the plume appear to extend into the Atlantic Ocean in the EUMETSAT Dust RGB, and not in the split window difference? It is due to the fact that the Dust RGB uses channel M-14 (8.55 µm), which is sensitive to absorption by sulfur dioxide (SO2) gas. The split window difference is better at detecting sulfuric ash particles, which may have mostly settled out of the atmosphere before reaching the Atlantic coast. There are likely still some ash particles in the plume, though – just not enough to show up easily in the split window difference. Detection of SO2 gas plumes has been used to infer the presence of volcanic ash.

Being able to see the location of the volcanic ash very important to pilots. Aircraft engines don’t work that well when they are sucking in particles of liquified sulfur and other abrasive and corrosive materials spit out by stinky volcanoes like Copahue.