Other Contributors: Brad Grant (Warning Decision Training Branch), Steve Corfidi (Storm Prediction Center), Fred Glass and Ron Przybylinski (NWS LSX)
Introduction
This lesson presents some of the key characteristics of Mesoscale Convective Systems(MCS). These include MCS initiation, synoptic scale pattern recognition and parameter evaluation, precipitation distribution, and movement. The objectives of this teletraining class are to illustrate how forecasters can better predict MCS development and evolution. These objectives are directly beneficial to forecasters because they apply them to operations. Specifically, these benefits can help forecasters anticipate potential heavy rain situations and severe thunderstorm development often associated with MCSs.
Training Session Options
VISITview playback without Audio – You may step through the VISITview file on your own to view the presentation. If talking points are available, you may use these in tandem with going through the slides.
After extracting the files into that directory click on the visitlocal.bat file to start the lesson. Advance slides on your own using the navigation controls (i.e., the Next button will advance to the next slide)
References/Additional Links
Talking points are available for this lesson and may be printed out to easily review the session in detail at any time.
Anderson, C. J. and R. W. Arritt, 1998: Mesoscale Convective Complexes and Persistent Elongated Convective Systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578-599.
Augustine, J. A. and Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the Central United States. Wea. Forecasting, 9, 116-135.
Augustine and Howard, 1991: Mesoscale Complexes over the United States during 1986 and 1987. Mon. Wea. Rev.,119, 1575-1589
Bartels, D. L. and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104-118.
Belville, J. D. and N. O. Stewart, 1983: Extreme rainfall events in Louisiana: the “New Orleans Type”. 5th Conference on Hydrometeorology, Amer. Meteor. Soc., Tulsa, OK, 284-290.
Blanchard, D. O., W. R. Cotton, and J. M. Brown, 1998: Mesoscale circulation growth under conditions of weak inertial instability. Mon. Wea. Rev., 126, 118-140.
Chappell, C. 1986: Quasi-stationary convective events. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed. Amer. Meteor. Soc., 289-310.
Corfidi, S. F., J. H. Merrit and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting , 11, 41-46.
Corfidi, S. F., Forecasting MCS mode and motion. 19th Conf. On Severe Local Storms, Minneapolis, MN Amer. Meteor. Soc., 626-629.
Doswell, C.A. III, H. E. Brooks and R.A. Maddox, 1996: Flash Flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560-581.
Elsner, J. B., W. H. Drag and J. K. Last, 1989: Synoptic weather patterns associated with the Milwaukee, Wisconsin flash flood of 6 August 1986. Wea. Forecasting, 4, 537-554.
Fankhauser, J. C., 1964: On the motion and predictability of convective systems. NSSP Rep. 21, 34 pp.
Fritsch, J. M., R. J. Kane and C. R. Chelius, 1986: The contribution of mesoscale convective systems to the warm season precipitation of the United States. J. Appl. Meteor., 25, 1333- 1345.
Frisch, J. M., J. D. Murphy and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 1781-18006.
Funk, T. W., 1991: Forecasting Techniques utilized by the Forecast Branch of the National Meteorological Center during a major convective rainfall event. Wea. Forecasting, 6, 548-564.
Geerts, B,, 1998: Mesoscale convective systems in the Southeast United States during 1994-1995: A survey. Wea. Forecasting, 13, 860-869.
Glass, F. H. and D. L Ferry, 1995: Characteristics of heavy rainfall events across the mid-Mississippi Valley during the warm season: Meteorological conditions and conceptual models. 14th Conference on Weather Analysis and Forecasting, Amer. Meteor. Soc., 34-41.
Glass, F. H., 2001: The extreme east-central Missouri flash flood of May 6-7 2000. Symposium on precipitation extremes: predictions, impacts and responses, Amer. Meteor. Soc., 174-179.
Hilgendorf, E. R. and R. H. Johnson, 1998: A study of the evolution of mesoscale convective systems using the WSR-88D data. Wea. Forecasting, 13, 437-452
Houze,R. A. B. F. Smull and P. Dodge, 1990: Mesoscale Organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613-654.
Heideman, K. F. and J. M. Fritsch, 1988: Forcing mechanisms and other characteristics of significant summertime precipitation. Wea. Forecasting,3, 115-130.
Hovanec, R. D. and L. H. Horn, 1975: Static stability and 300 mb isotach field in the Colorado cyclogenetic region. Mon Wea. Rev., 103, 628-638.
Johns, R. H. and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 32-49.
Jiang. W. and Scofield, 1987: Satellite observed mesoscale convective system propagation characteristics and a 3-12 hour heavy precipitation index. NOAA Tech. Memo, NESDIS 20, Washington DC, 43 pp.
Junker, N. W. , R. S. Schneider and S. L. Fauver, 1999: Study of heavy rainfall events during the Great Midwest Flood of 1993. Wea. Forecasting, 14, 701-712.
Junker, N. W. and R. S. Schneider, 1997: Two case studies of quasi-stationary convective during the 1993 Great Midwest Flood. Natl. Wea. Dig., 21, 5-17.
Kane, R. J., C. R. Chelius and J. M. Fritsch, 1987: Precipitation characteristics of mesoscale convective weather systems. J. Climate Appl. Meteor., 26, 1345-1357.
Loehrer, S. M. and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon Wea. Rev., 123, 600-621.
Maddox, R. A., C. F. Chappell and L. R. Hoxit, 1979: Synoptic and mesoscale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115-123.
Maddox, R. A., 1980: Mesoscale Convective Complexes. Bull. Amer. Meteor. Soc., 61, 1374-1387. Maddox, R. A. 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev., 111, 1475-1493.
Maddox, R. A., F. Canova and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 1866-1877.
Market, P.S., A. R. Lupo, C. E. Halcomb, F. A. Akyuz, P Guinan, 2001: Overview of the of 7 May 2000 extreme rainfall event in Missouri. Symposium on precipitation extremes: predictions, impacts and responses, Amer. Meteor. Soc., 162-165.
McAnelly, R. L. and W. R. Cotton, 1986: Meso-b-scale characteristics of an episode of meso-a-scale convective complexes. Mon. Wea. Rev., 114, 1740-1770.
McAnelly, R. L. and W. R. Cotton, 1992: Early Growth of Mesoscale Convective Complexes: A meso-b-scale cycle of convective precipitation? Mon. Wea. Rev., 120, 1851-1877.
Mohr, K. I. and E. J. Zipser, 1996: Defining Mesoscale convective systems by their 85-Ghz ice-scattering signatures. Bull. Amer. Soc., 77, 1179-1189.
Moore, J.T. and G. E. Vanknowe, 1992: The effect of jet-streak curvature on kinematic fields. Mon. Wea. Rev. 120, 2429-2441.
Parker, M. D. and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413-3436.
Raymond and Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 51, 1352-1371.
Szeta, K. K., R. E. Stewart and C. A. Lin, 1988: Mesoscale circulations forced by melting snow. Part I: Basic simulations and dynamics. J. Atmos. Sci, 45,1629-1640.
Szeta, K. K., R. E. Stewart and C. A. Lin, 1988: Mesoscale circulations forced by melting snow. Part II. Application to Meteorological Features. J. Atmos. Sci., 45, 1641-1650.
Uccellini. L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682-703.
Weisman, M. L. and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical shear and buoyancy. Mon Wea. Rev., 110, 504-520.
Weisman. M. L. and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479-2498.
Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived convective systems. J. Atmos. Sci., 49, 1829-1847.